Gorgulla Christoph, Fackeldey Konstantin, Wagner Gerhard, Arthanari Haribabu
Department of Physics, Harvard University, Cambridge, USA.
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA.
Supercomput Front Innov. 2020 Nov 7;7(3):4-12. doi: 10.14529/jsfi200301.
Structure-based virtual screening approaches have the ability to dramatically reduce the time and costs associated to the discovery of new drug candidates. Studies have shown that the true hit rate of virtual screenings improves with the scale of the screened ligand libraries. Therefore, we have recently developed an open source drug discovery platform (VirtualFlow), which is able to routinely carry out ultra-large virtual screenings. One of the primary challenges of molecular docking is the circumstance when the protein is highly dynamic or when the structure of the protein cannot be captured by a static pose. To accommodate protein dynamics, we report the extension of VirtualFlow to allow the docking of ligands using a grey wolf optimization algorithm using the docking program GWOVina, which substantially improves the quality and efficiency of flexible receptor docking compared to AutoDock Vina. We demonstrate the linear scaling behavior of VirtualFlow utilizing GWOVina up to 128 000 CPUs. The newly supported docking method will be valuable for drug discovery projects in which protein dynamics and flexibility play a significant role.
基于结构的虚拟筛选方法有能力大幅减少与发现新候选药物相关的时间和成本。研究表明,虚拟筛选的真正命中率会随着所筛选配体库规模的增大而提高。因此,我们最近开发了一个开源药物发现平台(VirtualFlow),它能够常规地进行超大型虚拟筛选。分子对接的主要挑战之一是蛋白质高度动态或其结构无法通过静态构象捕获的情况。为了适应蛋白质动力学,我们报告了对VirtualFlow的扩展,使其能够使用对接程序GWOVina通过灰狼优化算法对接配体,与AutoDock Vina相比,这大大提高了柔性受体对接的质量和效率。我们展示了使用GWOVina的VirtualFlow在多达128000个CPU上的线性缩放行为。新支持的对接方法对于蛋白质动力学和柔性起着重要作用的药物发现项目将很有价值。