Lu Shengtao, Rodrigues Roselyn M, Huang Shuyuan, Estabrook Daniel A, Chapman John O, Guan Xun, Sletten Ellen M, Liu Chong
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Lead contact: Chong Liu.
Chem Catal. 2021 Aug 19;1(3):704-720. doi: 10.1016/j.checat.2021.06.002. Epub 2021 Jun 28.
Powered by renewable electricity, biological | inorganic hybrids employ water-splitting electrocatalysis and generate H as reducing equivalents for microbial catalysis. The approach integrates the beauty of biocatalysis with the energy efficiency of inorganic materials for sustainable chemical production. Yet a successful integration requires delicate control of the hybrid's extracellular chemical environment. Such an argument is evident in the exemplary case of O because biocatalysis has a stringent requirement of O but the electrocatalysis may inadvertently perturb the oxidative pressure of biological moieties. Here we report the addition of perfluorocarbon (PFC) nanoemulsions promote a biocompatible O microenvironment in a O-sensitive N-fixing biological | inorganic hybrid. Langmuir-type nonspecific binding between bacteria and nanoemulsions facilitates O transport in bacterial microenvironment and leads to a 250% increase in efficiency for organic fertilizers within 120 hours. Controlling the biological microenvironment with nanomaterials heralds a general approach accommodating the compatibility in biological | inorganic hybrids.
由可再生电力驱动,生物|无机杂化材料采用水分解电催化,并产生H作为微生物催化的还原当量。该方法将生物催化的优势与无机材料的能源效率相结合,以实现可持续的化学生产。然而,成功的整合需要对杂化材料的细胞外化学环境进行精细控制。在O的典型案例中,这种观点很明显,因为生物催化对O有严格要求,但电催化可能会无意中扰乱生物部分的氧化压力。在这里,我们报告添加全氟化碳(PFC)纳米乳液可在对O敏感的固氮生物|无机杂化材料中促进生物相容性O微环境。细菌与纳米乳液之间的朗缪尔型非特异性结合促进了O在细菌微环境中的运输,并使有机肥料在120小时内的效率提高了250%。用纳米材料控制生物微环境预示着一种适应生物|无机杂化材料相容性的通用方法。