Del Rosario Mario, Heil Hannah S, Mendes Afonso, Saggiomo Vittorio, Henriques Ricardo
Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.
Laboratory of BioNanoTechnology, Wageningen University and Research, Wageningen, 6708WG, The Netherlands.
Adv Biol (Weinh). 2022 Apr;6(4):e2100994. doi: 10.1002/adbi.202100994. Epub 2021 Oct 24.
The maker movement has reached the optics labs, empowering researchers to create and modify microscope designs and imaging accessories. 3D printing has a disruptive impact on the field, improving accessibility to fabrication technologies in additive manufacturing. This approach is particularly useful for rapid, low-cost prototyping, allowing unprecedented levels of productivity and accessibility. From inexpensive microscopes for education such as the FlyPi to the highly complex robotic microscope OpenFlexure, 3D printing is paving the way for the democratization of technology, promoting collaborative environments between researchers, as 3D designs are easily shared. This holds the unique possibility of extending the open-access concept from knowledge to technology, allowing researchers everywhere to use and extend model structures. Here, it is presented a review of additive manufacturing applications in optical microscopy for life sciences, guiding the user through this new and exciting technology and providing a starting point to anyone willing to employ this versatile and powerful new tool.
创客运动已经进入光学实验室,使研究人员能够创建和修改显微镜设计及成像附件。3D打印对该领域产生了颠覆性影响,提高了增材制造中制造技术的可及性。这种方法对于快速、低成本的原型制作特别有用,能够实现前所未有的生产力水平和可及性。从用于教育的廉价显微镜(如FlyPi)到高度复杂的机器人显微镜OpenFlexure,3D打印正在为技术的民主化铺平道路,促进研究人员之间的协作环境,因为3D设计易于共享。这拥有将开放获取概念从知识扩展到技术的独特可能性,使各地的研究人员都能使用和扩展模型结构。在此,本文对增材制造在生命科学光学显微镜中的应用进行综述,引导用户了解这项令人兴奋的新技术,并为任何愿意使用这种多功能且强大的新工具的人提供一个起点。