Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 105, 1113 Sofia, Bulgaria.
Department of Internal Diseases "Prof. St. Kirkovich", Medical University of Sofia, 1431 Sofia, Bulgaria.
Sensors (Basel). 2021 Oct 15;21(20):6848. doi: 10.3390/s21206848.
Considering the significant burden to patients and healthcare systems globally related to atrial fibrillation (AF) complications, the early AF diagnosis is of crucial importance. In the view of prominent perspectives for fast and accurate point-of-care arrhythmia detection, our study optimizes an artificial neural network (NN) classifier and ranks the importance of enhanced 137 diagnostic ECG features computed from time and frequency ECG signal representations of short single-lead strips available in 2017 Physionet/CinC Challenge database. Based on hyperparameters' grid search of densely connected NN layers, we derive the optimal topology with three layers and 128, 32, 4 neurons per layer (DenseNet-3@128-32-4), which presents maximal F1-scores for classification of Normal rhythms (0.883, 5076 strips), AF (0.825, 758 strips), Other rhythms (0.705, 2415 strips), Noise (0.618, 279 strips) and total F1 relevant to the CinC Challenge of 0.804, derived by five-fold cross-validation. DenseNet-3@128-32-4 performs equally well with 137 to 32 features and presents tolerable reduction by about 0.03 to 0.06 points for limited input sets, including 8 and 16 features, respectively. The feature reduction is linked to effective application of a comprehensive method for computation of the feature map importance based on the weights of the activated neurons through the total path from input to specific output in DenseNet. The detailed analysis of 20 top-ranked ECG features with greatest importance to the detection of each rhythm and overall of all rhythms reveals DenseNet decision-making process, noticeably corresponding to the cardiologists' diagnostic point of view.
考虑到与心房颤动(AF)并发症相关的全球患者和医疗系统的巨大负担,早期 AF 诊断至关重要。鉴于快速准确的即时心律失常检测具有突出的观点,我们的研究优化了人工神经网络(NN)分类器,并对从可用的 2017 年 Physionet/CinC 挑战赛数据库中的短单导联条的时间和频率 ECG 信号表示中计算得出的增强的 137 个诊断 ECG 特征的重要性进行了排序。基于密集连接 NN 层的超参数网格搜索,我们得出了最佳拓扑结构,具有三个层和每层 128、32、4 个神经元(DenseNet-3@128-32-4),该结构在分类正常节律(0.883,5076 条)、AF(0.825,758 条)、其他节律(0.705,2415 条)、噪声(0.618,279 条)方面具有最大的 F1 分数,总 CinC 挑战赛 F1 分数为 0.804,通过五折交叉验证得出。DenseNet-3@128-32-4 具有相同的性能,与 137 到 32 个特征,并且在输入集有限时,包括 8 个和 16 个特征,分别可容忍减少约 0.03 到 0.06 个点。特征减少与基于激活神经元的权重通过 DenseNet 中从输入到特定输出的总路径计算特征图重要性的综合方法的有效应用相关。对每个节律和所有节律的 20 个最重要特征的详细分析揭示了 DenseNet 的决策过程,明显对应于心脏病专家的诊断观点。