Suppr超能文献

机械力和代谢变化共同作用驱动细胞记忆和内皮表型。

Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes.

机构信息

Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.

Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.

出版信息

Curr Top Membr. 2021;87:199-253. doi: 10.1016/bs.ctm.2021.07.003. Epub 2021 Sep 25.

Abstract

Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.

摘要

内皮细胞排列在动脉、静脉和淋巴血管树的最内层,因此会受到血流动力、拉伸和僵硬机械力的影响。正常情况下处于静止状态的内皮细胞具有血流动力学设定点,并且会对紊乱的血流动力学“激活”,这可能预示着即将出现营养物质或气体耗竭。大多数组织床中的内皮细胞通常处于失活状态,维持血管屏障功能,具有抗炎、抗凝血和抗血栓形成的作用。然而,在异常的机械力下,内皮细胞的信号转导会发生相应的改变,导致预示着病理性疾病的细胞变化。内皮细胞代谢现在被认为是支撑细胞转化的主要中间途径。在这篇综述中,我们讨论了内皮细胞在大血管、微血管和淋巴管中感知到的各种机械力,以及环境机械力的变化如何导致代谢的改变,最终影响细胞生理学、细胞记忆,最终影响疾病的发生和发展。

相似文献

1
Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes.
Curr Top Membr. 2021;87:199-253. doi: 10.1016/bs.ctm.2021.07.003. Epub 2021 Sep 25.
2
Hemodynamic Forces, Endothelial Mechanotransduction, and Vascular Diseases.
Magn Reson Med Sci. 2022 Mar 1;21(2):258-266. doi: 10.2463/mrms.rev.2021-0018. Epub 2021 May 22.
4
Mechanotransduction of mesenchymal stem cells and hemodynamic implications.
Chin J Physiol. 2023 Mar-Apr;66(2):55-64. doi: 10.4103/cjop.CJOP-D-22-00144.
5
Exogenous and endogenous force regulation of endothelial cell behavior.
J Biomech. 2010 Jan 5;43(1):79-86. doi: 10.1016/j.jbiomech.2009.09.012. Epub 2009 Oct 7.
6
Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.
Microcirculation. 2018 Jul;25(5):e12455. doi: 10.1111/micc.12455. Epub 2018 May 30.
7
Hemodynamic Control of Endothelial Cell Fates in Development.
Annu Rev Cell Dev Biol. 2016 Oct 6;32:633-648. doi: 10.1146/annurev-cellbio-100814-125610.
8
Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments.
ACS Biomater Sci Eng. 2018 Nov 12;4(11):3818-3842. doi: 10.1021/acsbiomaterials.8b00628. Epub 2018 Nov 1.
9
The molecular mechanism of mechanotransduction in vascular homeostasis and disease.
Clin Sci (Lond). 2020 Sep 18;134(17):2399-2418. doi: 10.1042/CS20190488.
10
Nuclear Mechanosensation and Mechanotransduction in Vascular Cells.
Front Cell Dev Biol. 2022 Jun 17;10:905927. doi: 10.3389/fcell.2022.905927. eCollection 2022.

引用本文的文献

2
Endothelial metabolic zonation in the vascular network: a spatiotemporal blueprint for angiogenesis.
Am J Physiol Heart Circ Physiol. 2025 Aug 1;329(2):H340-H357. doi: 10.1152/ajpheart.00352.2025. Epub 2025 Jun 27.
3
Mechanosensitive super-enhancers regulate genes linked to atherosclerosis in endothelial cells.
J Cell Biol. 2024 Mar 4;223(3). doi: 10.1083/jcb.202211125. Epub 2024 Jan 17.
4
A mechanical modeling framework to study endothelial permeability.
Biophys J. 2024 Feb 6;123(3):334-348. doi: 10.1016/j.bpj.2023.12.026. Epub 2024 Jan 1.
5
Role of glycolysis in diabetic atherosclerosis.
World J Diabetes. 2023 Oct 15;14(10):1478-1492. doi: 10.4239/wjd.v14.i10.1478.
6
Endothelial mechanobiology in atherosclerosis.
Cardiovasc Res. 2023 Jul 6;119(8):1656-1675. doi: 10.1093/cvr/cvad076.
7
Metabolic reprogramming: A novel therapeutic target in diabetic kidney disease.
Front Pharmacol. 2022 Sep 2;13:970601. doi: 10.3389/fphar.2022.970601. eCollection 2022.

本文引用的文献

1
The zinc finger transcription factor, KLF2, protects against COVID-19 associated endothelial dysfunction.
Signal Transduct Target Ther. 2021 Jul 12;6(1):266. doi: 10.1038/s41392-021-00690-5.
2
Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells.
Nat Metab. 2021 May;3(5):714-727. doi: 10.1038/s42255-021-00390-y. Epub 2021 May 24.
3
Roles of KLF4 and AMPK in the inhibition of glycolysis by pulsatile shear stress in endothelial cells.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2103982118.
4
SARS-CoV-2 Infection Is Associated with Reduced Krüppel-like Factor 2 in Human Lung Autopsy.
Am J Respir Cell Mol Biol. 2021 Aug;65(2):222-226. doi: 10.1165/rcmb.2020-0564LE.
5
Preventing activation in fibroblasts yields wound regeneration without scarring.
Science. 2021 Apr 23;372(6540). doi: 10.1126/science.aba2374.
7
YAP expression in endothelial cells prevents ventilator-induced lung injury.
Am J Physiol Lung Cell Mol Physiol. 2021 Apr 1;320(4):L568-L582. doi: 10.1152/ajplung.00472.2020. Epub 2021 Feb 10.
9
The Hippo pathway component Wwc2 is a key regulator of embryonic development and angiogenesis in mice.
Cell Death Dis. 2021 Jan 22;12(1):117. doi: 10.1038/s41419-021-03409-0.
10
Longitudinal shear stress response in human endothelial cells to atheroprone and atheroprotective conditions.
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2023236118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验