Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Nat Commun. 2021 Oct 28;12(1):6219. doi: 10.1038/s41467-021-26455-w.
Vascularization is critical for skull development, maintenance, and healing. Yet, there remains a significant knowledge gap in the relationship of blood vessels to cranial skeletal progenitors during these processes. Here, we introduce a quantitative 3D imaging platform to enable the visualization and analysis of high-resolution data sets (>100 GB) throughout the entire murine calvarium. Using this technique, we provide single-cell resolution 3D maps of vessel phenotypes and skeletal progenitors in the frontoparietal cranial bones. Through these high-resolution data sets, we demonstrate that CD31Emcn vessels are spatially correlated with both Osterix+ and Gli1+ skeletal progenitors during postnatal growth, healing, and stimulated remodeling, and are concentrated at transcortical canals and osteogenic fronts. Interestingly, we find that this relationship is weakened in mice with a conditional knockout of PDGF-BB in TRAP+ osteoclasts, suggesting a potential role for osteoclasts in maintaining the native cranial microvascular environment. Our findings provide a foundational framework for understanding how blood vessels and skeletal progenitors spatially interact in cranial bone, and will enable more targeted studies into the mechanisms of skull disease pathologies and treatments. Additionally, our technique can be readily adapted to study numerous cell types and investigate other elusive phenomena in cranial bone biology.
血管生成对于颅骨的发育、维持和愈合至关重要。然而,在这些过程中,血管与颅面骨骼祖细胞之间的关系仍然存在着很大的知识空白。在这里,我们引入了一种定量的 3D 成像平台,能够对整个小鼠颅盖骨的高分辨率数据集(>100GB)进行可视化和分析。利用这项技术,我们提供了前额顶骨中血管表型和骨骼祖细胞的单细胞分辨率 3D 图谱。通过这些高分辨率数据集,我们证明了在出生后生长、愈合和刺激重塑过程中,CD31Emcn 血管与 Osterix+和 Gli1+骨骼祖细胞在空间上是相关的,并且集中在皮质下骨道和成骨前沿。有趣的是,我们发现这种关系在 TRAP+破骨细胞中 PDGF-BB 条件性敲除的小鼠中减弱,这表明破骨细胞在维持颅骨固有微血管环境方面可能发挥作用。我们的研究结果为理解血管和骨骼祖细胞在颅骨中如何空间相互作用提供了一个基础框架,并将为颅骨疾病病理学和治疗的机制研究提供更多的靶向研究。此外,我们的技术可以很容易地适应于研究许多细胞类型,并研究颅骨生物学中其他难以捉摸的现象。