Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK.
Neuron. 2021 Dec 15;109(24):4001-4017.e10. doi: 10.1016/j.neuron.2021.09.044. Epub 2021 Oct 28.
Information processing in the brain depends on the integration of synaptic input distributed throughout neuronal dendrites. Dendritic integration is a hierarchical process, proposed to be equivalent to integration by a multilayer network, potentially endowing single neurons with substantial computational power. However, whether neurons can learn to harness dendritic properties to realize this potential is unknown. Here, we develop a learning rule from dendritic cable theory and use it to investigate the processing capacity of a detailed pyramidal neuron model. We show that computations using spatial or temporal features of synaptic input patterns can be learned, and even synergistically combined, to solve a canonical nonlinear feature-binding problem. The voltage dependence of the learning rule drives coactive synapses to engage dendritic nonlinearities, whereas spike-timing dependence shapes the time course of subthreshold potentials. Dendritic input-output relationships can therefore be flexibly tuned through synaptic plasticity, allowing optimal implementation of nonlinear functions by single neurons.
大脑中的信息处理依赖于分布在神经元树突中的突触输入的整合。树突整合是一个分层的过程,被提议等效于通过多层网络进行整合,这可能为单个神经元赋予了大量的计算能力。然而,神经元是否能够学会利用树突属性来实现这种潜力尚不清楚。在这里,我们从树突电缆理论中推导出一个学习规则,并使用它来研究一个详细的锥体神经元模型的处理能力。我们表明,可以学习使用突触输入模式的空间或时间特征进行计算,甚至可以协同组合,以解决典型的非线性特征绑定问题。学习规则的电压依赖性驱使共激活突触参与树突非线性,而尖峰时间依赖性则形成亚阈值电位的时间过程。因此,通过突触可塑性可以灵活地调整树突的输入-输出关系,从而允许单个神经元最佳地实现非线性函数。