IBM Research, Yorktown, NY, USA.
Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia.
J Pharmacokinet Pharmacodyn. 2022 Feb;49(1):51-64. doi: 10.1007/s10928-021-09787-4. Epub 2021 Oct 29.
Biophysical models are increasingly used to gain mechanistic insights by fitting and reproducing experimental and clinical data. The inherent variability in the recorded datasets, however, presents a key challenge. In this study, we present a novel approach, which integrates mechanistic modeling and machine learning to analyze in vitro cardiac mechanics data and solve the inverse problem of model parameter inference. We designed a novel generative adversarial network (GAN) and employed it to construct virtual populations of cardiac ventricular myocyte models in order to study the action of Omecamtiv Mecarbil (OM), a positive cardiac inotrope. Populations of models were calibrated from mechanically unloaded myocyte shortening recordings obtained in experiments on rat myocytes in the presence and absence of OM. The GAN was able to infer model parameters while incorporating prior information about which model parameters OM targets. The generated populations of models reproduced variations in myocyte contraction recorded during in vitro experiments and provided improved understanding of OM's mechanism of action. Inverse mapping of the experimental data using our approach suggests a novel action of OM, whereby it modifies interactions between myosin and tropomyosin proteins. To validate our approach, the inferred model parameters were used to replicate other in vitro experimental protocols, such as skinned preparations demonstrating an increase in calcium sensitivity and a decrease in the Hill coefficient of the force-calcium (F-Ca) curve under OM action. Our approach thereby facilitated the identification of the mechanistic underpinnings of experimental observations and the exploration of different hypotheses regarding variability in this complex biological system.
生物物理模型越来越多地被用于通过拟合和再现实验和临床数据来获得机械洞察力。然而,记录数据集的固有可变性是一个关键挑战。在这项研究中,我们提出了一种新方法,该方法将机械建模和机器学习集成在一起,以分析体外心脏力学数据并解决模型参数推断的逆问题。我们设计了一种新颖的生成对抗网络(GAN),并利用它构建了心脏心室肌细胞模型的虚拟群体,以研究 Omecamtiv Mecarbil(OM)的作用,OM 是一种正性心脏变力药。模型群体是从 OM 存在和不存在的情况下在大鼠心肌细胞实验中获得的机械卸载心肌细胞缩短记录中进行校准的。GAN 能够在纳入 OM 靶向的模型参数的先验信息的同时推断模型参数。生成的模型群体再现了在体外实验中记录的心肌收缩的变化,并提供了对 OM 作用机制的更好理解。使用我们的方法对实验数据进行逆映射表明 OM 的一种新作用,即它改变肌球蛋白和原肌球蛋白蛋白之间的相互作用。为了验证我们的方法,推断的模型参数用于复制其他体外实验方案,例如在 OM 作用下,肌球蛋白和原肌球蛋白蛋白之间的相互作用,增加了钙敏感性并降低了力-钙(F-Ca)曲线的 Hill 系数。因此,我们的方法促进了对实验观察的机械基础的识别,并探索了关于这个复杂生物系统中变异性的不同假设。