Suppr超能文献

人类颅骨的声学特性。

Acoustic properties across the human skull.

机构信息

Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, UT, United States.

出版信息

Ultrasonics. 2022 Feb;119:106591. doi: 10.1016/j.ultras.2021.106591. Epub 2021 Oct 21.

Abstract

Transcranial ultrasound is emerging as a noninvasive tool for targeted treatments of brain disorders. Transcranial ultrasound has been used for remotely mediated surgeries, transient opening of the blood-brain barrier, local drug delivery, and neuromodulation. However, all applications have been limited by the severe attenuation and phase distortion of ultrasound by the skull. Here, we characterized the dependence of the aberrations on specific anatomical segments of the skull. In particular, we measured ultrasound propagation properties throughout the perimeter of intact human skulls at 500 kHz. We found that the parietal bone provides substantially higher transmission (average pressure transmission 31 ± 7%) and smaller phase distortion (242 ± 44 degrees) than frontal (13 ± 2%, 425 ± 47 degrees) and occipital bone regions (16 ± 4%, 416 ± 35 degrees). In addition, we found that across skull regions, transmission strongly anti-correlated (R=-0.79) and phase distortion correlated (R=0.85) with skull thickness. This information guides the design, positioning, and skull correction functionality of next-generation devices for effective, safe, and reproducible transcranial focused ultrasound therapies.

摘要

经颅超声作为一种针对脑部疾病的非侵入性靶向治疗手段正在兴起。经颅超声已被用于远程介导手术、短暂性血脑屏障开放、局部药物输送和神经调节。然而,所有应用都受到颅骨对超声严重衰减和相位失真的限制。在这里,我们描述了像差对颅骨特定解剖部位的依赖性。特别是,我们在 500 kHz 下测量了完整的人类颅骨周边的超声传播特性。我们发现,顶骨提供了明显更高的传输(平均压力传输 31 ± 7%)和更小的相位失真(242 ± 44 度),而额骨(13 ± 2%,425 ± 47 度)和枕骨区域(16 ± 4%,416 ± 35 度)则不然。此外,我们发现,在颅骨区域之间,传输与颅骨厚度呈强烈负相关(R=-0.79),而相位失真则呈正相关(R=0.85)。这些信息指导了下一代用于有效、安全和可重复的经颅聚焦超声治疗的设备的设计、定位和颅骨校正功能。

相似文献

1
Acoustic properties across the human skull.
Ultrasonics. 2022 Feb;119:106591. doi: 10.1016/j.ultras.2021.106591. Epub 2021 Oct 21.
4
Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
J Neural Eng. 2017 Dec;14(6):066012. doi: 10.1088/1741-2552/aa843e.
5
The effects of image homogenisation on simulated transcranial ultrasound propagation.
Phys Med Biol. 2018 Jul 16;63(14):145014. doi: 10.1088/1361-6560/aacc33.
6
Local frequency dependence in transcranial ultrasound transmission.
Phys Med Biol. 2006 May 7;51(9):2293-305. doi: 10.1088/0031-9155/51/9/013. Epub 2006 Apr 19.
7
Characterization of ultrasound propagation through ex-vivo human temporal bone.
Ultrasound Med Biol. 2008 Oct;34(10):1578-89. doi: 10.1016/j.ultrasmedbio.2008.02.012. Epub 2008 May 23.
8
Transcranial ultrasound focus reconstruction with phase and amplitude correction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Sep;52(9):1518-22. doi: 10.1109/tuffc.2005.1516024.
10
Influence of Plastination on Ultrasound Transmission Through the Human Skull.
Ultrasound Med Biol. 2023 Mar;49(3):901-907. doi: 10.1016/j.ultrasmedbio.2022.10.014. Epub 2022 Dec 12.

引用本文的文献

2
Transcranial ultrasound stimulation parameters for neurological diseases: a systematic review.
Front Neurol. 2025 May 21;16:1567482. doi: 10.3389/fneur.2025.1567482. eCollection 2025.
3
Volumetric Passive Acoustic Mapping and Cavitation Detection of Nanobubbles under Low-Frequency Insonation.
ACS Mater Au. 2024 Oct 29;5(1):159-169. doi: 10.1021/acsmaterialsau.4c00064. eCollection 2025 Jan 8.
4
A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study.
J Biophotonics. 2025 Jan;18(1):e202400131. doi: 10.1002/jbio.202400131. Epub 2024 Nov 14.
6
Noninvasive Modulation of the Subcallosal Cingulate and Depression With Focused Ultrasonic Waves.
Biol Psychiatry. 2025 Apr 15;97(8):825-834. doi: 10.1016/j.biopsych.2024.09.029. Epub 2024 Oct 11.
7
A Physiological Marker for Deep Brain Ultrasonic Neuromodulation.
Neuromodulation. 2025 Jan;28(1):155-161. doi: 10.1016/j.neurom.2024.07.005. Epub 2024 Aug 22.
8
A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Sep;71(9):1087-1096. doi: 10.1109/TUFFC.2024.3436918. Epub 2024 Sep 4.
9
Noninvasive targeted modulation of pain circuits with focused ultrasonic waves.
Pain. 2024 Dec 1;165(12):2829-2839. doi: 10.1097/j.pain.0000000000003322. Epub 2024 Jul 30.
10
Controlled ultrasonic interventions through the human skull.
Front Hum Neurosci. 2024 Jun 24;18:1412921. doi: 10.3389/fnhum.2024.1412921. eCollection 2024.

本文引用的文献

1
Ultrasound-sensitive nanodroplets achieve targeted neuromodulation.
J Control Release. 2021 Apr 10;332:30-39. doi: 10.1016/j.jconrel.2021.02.010. Epub 2021 Feb 16.
2
Acoustic Attenuation: Multifrequency Measurement and Relationship to CT and MR Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1532-1545. doi: 10.1109/TUFFC.2020.3039743. Epub 2021 Apr 26.
4
Applications of focused ultrasound in the brain: from thermoablation to drug delivery.
Nat Rev Neurol. 2021 Jan;17(1):7-22. doi: 10.1038/s41582-020-00418-z. Epub 2020 Oct 26.
6
Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked.
Brain Stimul. 2020 Nov-Dec;13(6):1527-1534. doi: 10.1016/j.brs.2020.08.014. Epub 2020 Sep 4.
7
Remote, brain region-specific control of choice behavior with ultrasonic waves.
Sci Adv. 2020 May 20;6(21):eaaz4193. doi: 10.1126/sciadv.aaz4193. eCollection 2020 May.
8
Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans.
Front Hum Neurosci. 2020 Feb 28;14:52. doi: 10.3389/fnhum.2020.00052. eCollection 2020.
9
Focused Ultrasound Platform for Investigating Therapeutic Neuromodulation Across the Human Hippocampus.
Ultrasound Med Biol. 2020 May;46(5):1270-1274. doi: 10.1016/j.ultrasmedbio.2020.01.007. Epub 2020 Feb 20.
10
A Noninvasive Ultrasound Resonance Method for Detecting Skull Induced Phase Shifts May Provide a Signal for Adaptive Focusing.
IEEE Trans Biomed Eng. 2020 Sep;67(9):2628-2637. doi: 10.1109/TBME.2020.2967033. Epub 2020 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验