Suppr超能文献

MRSaiFE:一种基于人工智能的比吸收率实时预测方法。

MRSaiFE: An AI-based Approach Towards the Real-Time Prediction of Specific Absorption Rate.

作者信息

Gokyar Sayim, Robb Fraser J L, Kainz Wolfgang, Chaudhari Akshay, Winkler Simone Angela

机构信息

Department of Radiology, Weill Cornell Medicine, New York City, NY 10065 USA.

GE Healthcare Coils, 1515 Danner Drive, Aurora, OH 44202 USA.

出版信息

IEEE Access. 2021;9:140824-140834. doi: 10.1109/access.2021.3118290.

Abstract

The purpose of this study is to investigate feasibility of estimating the specific absorption rate (SAR) in MRI in real time. To this goal, SAR maps are predicted from 3T- and 7T-simulated magnetic resonance (MR) images in 10 realistic human body models via a convolutional neural network. Two-dimensional (2-D) U-Net architectures with varying contraction layers and different convolutional filters were designed to estimate the SAR distribution in realistic body models. Sim4Life (ZMT, Switzerland) was used to create simulated anatomical images and SAR maps at 3T and 7T imaging frequencies for Duke, Ella, Charlie, and Pregnant Women (at 3, 7, and 9 month gestational stages) body models. Mean squared error (MSE) was used as the cost function and the structural similarity index (SSIM) was reported. A 2-D U-Net with 4 contracting (and 4 expanding) layers and 64 convolutional filters at the initial stage showed the best compromise to estimate SAR distributions. Adam optimizer outperformed stochastic gradient descent (SGD) for all cases with an average SSIM of 90.5∓3.6 % and an average MSE of 0.7∓0.6% for head images at 7T, and an SSIM of >85.1∓6.2 % and an MSE of 0.4∓0.4% for 3T body imaging. Algorithms estimated the SAR maps for 224×224 slices under 30 ms. The proposed methodology shows promise to predict real-time SAR in clinical imaging settings without using extra mapping techniques or patient-specific calibrations.

摘要

本研究的目的是探讨实时估计磁共振成像(MRI)中比吸收率(SAR)的可行性。为实现这一目标,通过卷积神经网络从10个真实人体模型的3T和7T模拟磁共振(MR)图像中预测SAR图。设计了具有不同收缩层和不同卷积滤波器的二维(2-D)U-Net架构,以估计真实人体模型中的SAR分布。使用Sim4Life(瑞士ZMT公司)为杜克、艾拉、查理和孕妇(妊娠3、7和9个月阶段)人体模型创建3T和7T成像频率下的模拟解剖图像和SAR图。使用均方误差(MSE)作为代价函数,并报告结构相似性指数(SSIM)。具有4个收缩(和4个扩展)层以及初始阶段64个卷积滤波器的二维U-Net在估计SAR分布方面表现出最佳折衷。在所有情况下,Adam优化器均优于随机梯度下降(SGD),对于7T头部图像,平均SSIM为90.5±3.6%,平均MSE为0.7±0.6%;对于3T人体成像,SSIM大于85.1±6.2%,MSE为0.4±0.4%。算法在30毫秒内估计了224×224切片的SAR图。所提出的方法有望在不使用额外映射技术或患者特定校准的情况下,在临床成像环境中预测实时SAR。

相似文献

1
MRSaiFE: An AI-based Approach Towards the Real-Time Prediction of Specific Absorption Rate.
IEEE Access. 2021;9:140824-140834. doi: 10.1109/access.2021.3118290.
2
Deep learning-based local SAR prediction using B maps and structural MRI of the head for parallel transmission at 7 T.
Magn Reson Med. 2023 Dec;90(6):2524-2538. doi: 10.1002/mrm.29797. Epub 2023 Jul 19.
3
Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI.
NMR Biomed. 2020 Jul;33(7):e4312. doi: 10.1002/nbm.4312. Epub 2020 Apr 30.
4
A deep learning method for image-based subject-specific local SAR assessment.
Magn Reson Med. 2020 Feb;83(2):695-711. doi: 10.1002/mrm.27948. Epub 2019 Sep 4.
5
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Med Phys. 2016 Dec;43(12):6588-6597. doi: 10.1118/1.4967487.
6
Reconstruction of multicontrast MR images through deep learning.
Med Phys. 2020 Mar;47(3):983-997. doi: 10.1002/mp.14006. Epub 2020 Jan 28.
9
Joint Reconstruction and Segmentation of 7T-like MR Images from 3T MRI Based on Cascaded Convolutional Neural Networks.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:764-772. doi: 10.1007/978-3-319-66182-7_87. Epub 2017 Sep 4.
10
Wavelet-based Semi-supervised Adversarial Learning for Synthesizing Realistic 7T from 3T MRI.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:786-794. doi: 10.1007/978-3-030-32251-9_86. Epub 2019 Oct 10.

引用本文的文献

1
Artificial Intelligence for Neuroimaging in Pediatric Cancer.
Cancers (Basel). 2025 Feb 12;17(4):622. doi: 10.3390/cancers17040622.
2
Rapid prediction of MRI-induced RF heating of active implantable medical devices using machine learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340900.
3
Deep learning-based local SAR prediction using B maps and structural MRI of the head for parallel transmission at 7 T.
Magn Reson Med. 2023 Dec;90(6):2524-2538. doi: 10.1002/mrm.29797. Epub 2023 Jul 19.
4
Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1-weighted dataset.
Magn Reson Med. 2022 Jul;88(1):464-475. doi: 10.1002/mrm.29215. Epub 2022 Mar 28.

本文引用的文献

2
Challenges in ensuring the generalizability of image quantitation methods for MRI.
Med Phys. 2022 Apr;49(4):2820-2835. doi: 10.1002/mp.15195. Epub 2021 Sep 29.
3
Low-count whole-body PET with deep learning in a multicenter and externally validated study.
NPJ Digit Med. 2021 Aug 23;4(1):127. doi: 10.1038/s41746-021-00497-2.
6
Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution.
Cereb Cortex. 2021 Jan 1;31(1):463-482. doi: 10.1093/cercor/bhaa237.
8
Diagnostic Accuracy of Quantitative Multicontrast 5-Minute Knee MRI Using Prospective Artificial Intelligence Image Quality Enhancement.
AJR Am J Roentgenol. 2021 Jun;216(6):1614-1625. doi: 10.2214/AJR.20.24172. Epub 2020 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验