Suppr超能文献

机器学习算法与列线图预测儿童外伤性脑损伤颅内损伤的比较。

Comparison of intracranial injury predictability between machine learning algorithms and the nomogram in pediatric traumatic brain injury.

机构信息

1Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai.

2Department of Computer Science, Faculty of Science, Prince of Songkla University, Hat Yai; and.

出版信息

Neurosurg Focus. 2021 Nov;51(5):E7. doi: 10.3171/2021.8.FOCUS2155.

Abstract

OBJECTIVE

The overuse of head CT examinations has been much discussed, especially those for minor traumatic brain injury (TBI). In the disruptive era, machine learning (ML) is one of the prediction tools that has been used and applied in various fields of neurosurgery. The objective of this study was to compare the predictive performance between ML and a nomogram, which is the other prediction tool for intracranial injury following cranial CT in children with TBI.

METHODS

Data from 964 pediatric patients with TBI were randomly divided into a training data set (75%) for hyperparameter tuning and supervised learning from 14 clinical parameters, while the remaining data (25%) were used for validation purposes. Moreover, a nomogram was developed from the training data set with similar parameters. Therefore, models from various ML algorithms and the nomogram were built and deployed via web-based application.

RESULTS

A random forest classifier (RFC) algorithm established the best performance for predicting intracranial injury following cranial CT of the brain. The area under the receiver operating characteristic curve for the performance of RFC algorithms was 0.80, with 0.34 sensitivity, 0.95 specificity, 0.73 positive predictive value, 0.80 negative predictive value, and 0.79 accuracy.

CONCLUSIONS

The ML algorithms, particularly the RFC, indicated relatively excellent predictive performance that would have the ability to support physicians in balancing the overuse of head CT scans and reducing the treatment costs of pediatric TBI in general practice.

摘要

目的

头部 CT 检查的过度使用一直备受关注,尤其是在轻微创伤性脑损伤(TBI)的情况下。在这个颠覆性的时代,机器学习(ML)是一种预测工具,已被应用于神经外科的各个领域。本研究的目的是比较机器学习和列线图这两种预测工具在儿童 TBI 后行头颅 CT 检查时颅内损伤的预测性能。

方法

将 964 例 TBI 患儿的数据随机分为训练数据集(75%),用于从 14 个临床参数中进行超参数调整和监督学习,其余数据(25%)用于验证目的。此外,还从训练数据集中开发了一个列线图,使用类似的参数。因此,通过基于网络的应用程序构建和部署了来自各种 ML 算法和列线图的模型。

结果

随机森林分类器(RFC)算法在预测头颅 CT 检查后颅内损伤方面表现最佳。RFC 算法的性能的接收器工作特征曲线下面积为 0.80,灵敏度为 0.34,特异性为 0.95,阳性预测值为 0.73,阴性预测值为 0.80,准确率为 0.79。

结论

ML 算法,特别是 RFC,表现出相对较好的预测性能,有望帮助医生平衡头部 CT 扫描的过度使用,并降低一般实践中儿科 TBI 的治疗成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验