Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK.
Microbiology (Reading). 2021 Nov;167(11). doi: 10.1099/mic.0.001106.
Cryptic links between apparently unrelated metabolic systems represent potential new drug targets in fungi. Evidence of such a link between zinc and gliotoxin (GT) biosynthesis in is emerging. Expression of some genes of the GT biosynthetic gene cluster is influenced by the zinc-dependent transcription activator ZafA, zinc may relieve GT-mediated fungal growth inhibition and, surprisingly, GT biosynthesis is influenced by zinc availability. In , dithiol gliotoxin (DTG), which has zinc-chelating properties, is converted to either GT or -dethiobis(methylthio)gliotoxin (BmGT) by oxidoreductase GliT and methyltransferase GtmA, respectively. A double deletion mutant lacking both GliT and GtmA was previously observed to be hypersensitive to exogenous GT exposure. Here we show that compared to wild-type exposure, exogenous GT and the zinc chelator ,,','-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibit ΔΔ growth, specifically under zinc-limiting conditions, which can be reversed by zinc addition. While GT biosynthesis is evident in zinc-depleted medium, addition of zinc (1 µM) suppressed GT and activated BmGT production. In addition, secretion of the unferrated siderophore, triacetylfusarinine C (TAFC), was evident by wild-type (at >5 µM zinc) and Δ (at >1 µM zinc) in a low-iron medium. TAFC secretion suggests that differential zinc-sensing between both strains may influence fungal Fe requirement. Label-free quantitative proteomic analysis of both strains under equivalent differential zinc conditions revealed protein abundance alterations in accordance with altered metabolomic observations, in addition to increased GliT abundance in Δ at 5 µM zinc, compared to wild-type, supporting a zinc-sensing deficiency in the mutant strain. The relative abundance of a range of oxidoreductase- and secondary metabolism-related enzymes was also evident in a zinc- and strain-dependent manner. Overall, we elaborate new linkages between zinc availability, natural product biosynthesis and oxidative stress homeostasis in .
在真菌中,看似不相关的代谢系统之间的隐秘联系代表了潜在的新药物靶点。锌与真菌Gliotoxin(GT)生物合成之间存在这种联系的证据正在出现。GT 生物合成基因簇的一些基因的表达受锌依赖性转录激活因子 ZafA 的影响,锌可能缓解 GT 介导的真菌生长抑制,而且令人惊讶的是,GT 生物合成受锌可用性的影响。在 中,具有锌螯合特性的二硫代 GT(DTG)分别被氧化还原酶 GliT 和甲基转移酶 GtmA 转化为 GT 或 -脱二硫双(甲基硫代)GT(BmGT)。先前观察到缺乏 GliT 和 GtmA 的双缺失突变体对外源 GT 暴露敏感。在这里,我们表明与野生型暴露相比,外源 GT 和锌螯合剂 ,,'-四(2-吡啶基甲基)-1,2-乙二胺(TPEN)抑制 ΔΔ生长,特别是在缺锌条件下,锌的添加可以逆转这种抑制。虽然在缺锌培养基中可以明显看出 GT 生物合成,但添加锌(1 μM)抑制了 GT 并激活了 BmGT 的产生。此外,在缺铁培养基中,野生型(在 >5 μM 锌下)和 Δ(在 >1 μM 锌下)都明显分泌了未酰化的铁载体三乙酰基麦角甾醇 C(TAFC)。TAFC 的分泌表明,两种菌株之间的差异锌感应可能影响真菌的 Fe 需求。在等效的差异锌条件下对两种菌株进行无标记定量蛋白质组学分析,除了在 5 μM 锌下与野生型相比,Δ中 GliT 的丰度增加外,还揭示了与代谢组学观察结果一致的蛋白质丰度变化,这支持了突变菌株中锌感应的缺陷。锌和菌株依赖性方式也明显影响了一系列氧化还原酶和次级代谢相关酶的相对丰度。总的来说,我们阐述了 在锌可用性、天然产物生物合成和氧化应激稳态之间的新联系。