Pedoia Valentina, Caliva Francesco, Kazakia Galateia, Burghardt Andrew J, Majumdar Sharmila
Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), 1700 Fourth Street, Suite 201, QB3 Building, San Francisco, CA, 94158, USA.
Curr Osteoporos Rep. 2021 Dec;19(6):699-709. doi: 10.1007/s11914-021-00701-y.
In this paper, we discuss how recent advancements in image processing and machine learning (ML) are shaping a new and exciting era for the osteoporosis imaging field. With this paper, we want to give the reader a basic exposure to the ML concepts that are necessary to build effective solutions for image processing and interpretation, while presenting an overview of the state of the art in the application of machine learning techniques for the assessment of bone structure, osteoporosis diagnosis, fracture detection, and risk prediction.
ML effort in the osteoporosis imaging field is largely characterized by "low-cost" bone quality estimation and osteoporosis diagnosis, fracture detection, and risk prediction, but also automatized and standardized large-scale data analysis and data-driven imaging biomarker discovery. Our effort is not intended to be a systematic review, but an opportunity to review key studies in the recent osteoporosis imaging research landscape with the ultimate goal of discussing specific design choices, giving the reader pointers to possible solutions of regression, segmentation, and classification tasks as well as discussing common mistakes.
在本文中,我们将探讨图像处理和机器学习(ML)的最新进展如何为骨质疏松症成像领域塑造一个全新且令人兴奋的时代。通过本文,我们希望让读者初步了解构建有效的图像处理和解读解决方案所需的机器学习概念,同时概述机器学习技术在骨结构评估、骨质疏松症诊断、骨折检测和风险预测应用中的最新进展。
骨质疏松症成像领域的机器学习工作主要特点是“低成本”的骨质量评估和骨质疏松症诊断、骨折检测以及风险预测,还有自动化和标准化的大规模数据分析以及数据驱动的成像生物标志物发现。我们的工作并非旨在进行系统综述,而是提供一个机会,回顾近期骨质疏松症成像研究领域的关键研究,最终目的是讨论具体的设计选择,为读者提供回归、分割和分类任务可能解决方案的提示,并讨论常见错误。