Suppr超能文献

突发公共卫生事件的多阶段网络舆情风险分级分析:基于新冠肺炎疫情微博的实证研究

Multi-stage Internet public opinion risk grading analysis of public health emergencies: An empirical study on Microblog in COVID-19.

作者信息

Liu Jun, Liu Liyi, Tu Yan, Li Shixuan, Li Zongmin

机构信息

School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China.

School of Business, Sichuan University, Chengdu 610065, China.

出版信息

Inf Process Manag. 2022 Jan;59(1):102796. doi: 10.1016/j.ipm.2021.102796. Epub 2021 Oct 26.

Abstract

In the period of Corona Virus Disease 2019 (COVID-19), millions of people participate in the discussion of COVID-19 on the Internet, which can easily trigger public opinion and threaten social stability. This paper creatively proposes a multi-stage risk grading model of Internet public opinion for public health emergencies. On the basis of general public opinion risk grading analysis, the model continuously pays attention to the risk level of Internet public opinion based on the time scale of regular or major information updates. This model combines Analytic Hierarchy Process Sort II (AHPSort II) and Swing Weighting (SW) methods and proposes a new Multi-Criteria Decision Making (MCDM) method - AHPSort II-SW. Intuitionistic fuzzy number and linguistic fuzzy number are introduced into the model to evaluate the criteria that cannot be quantified. The multi-stage model is tested using more than 2,000 textual data about COVID-19 collected from Microblog, a leading social media platform in China. Seven public opinion risk assessments were conducted from January 23 to April 8, 2020. The empirical results show that in the early COVID-19 outbreak, the risk of public opinion is more serious on macroscopic view. In details, the risk of public opinion decreases slowly with time, but the emergence of important events may still increase the risk of public opinion. The analysis results are in line with the actual situation and verify the effectiveness of the method. Comparative analysis indicates the improved method is proved to be superior and effective, sensitivity analysis confirms its stability. Finally, management suggestions was provided, this study contributes to the literature on public opinion risk assessment and provides implications for practice.

摘要

在2019年冠状病毒病(COVID-19)期间,数百万人在互联网上参与关于COVID-19的讨论,这很容易引发公众舆论并威胁社会稳定。本文创造性地提出了一种针对突发公共卫生事件的互联网舆论多阶段风险分级模型。在一般舆论风险分级分析的基础上,该模型基于定期或重大信息更新的时间尺度,持续关注互联网舆论的风险水平。该模型结合了层次分析法排序II(AHPSort II)和摆动加权(SW)方法,提出了一种新的多准则决策(MCDM)方法——AHPSort II-SW。将直觉模糊数和语言模糊数引入模型,以评估无法量化的准则。使用从中国领先社交媒体平台微博收集的2000多条关于COVID-19的文本数据对多阶段模型进行了测试。在2020年1月23日至4月8日期间进行了七次舆论风险评估。实证结果表明,在COVID-19疫情初期,从宏观角度看舆论风险更为严重。具体而言,舆论风险随时间缓慢下降,但重要事件的出现仍可能增加舆论风险。分析结果符合实际情况,验证了该方法的有效性。对比分析表明改进后的方法具有优越性和有效性,敏感性分析证实了其稳定性。最后提供了管理建议,本研究为舆论风险评估文献做出了贡献,并为实践提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a6/8556697/e16ea0c35fe3/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验