Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria.
Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany.
ACS Sens. 2021 Nov 26;6(11):3994-4000. doi: 10.1021/acssensors.1c01369. Epub 2021 Nov 9.
Given the importance of ion gradients and fluxes in biology, monitoring ions locally at the exterior of the plasma membrane of intact cells in a noninvasive manner is highly desirable but challenging. Classical targeting of genetically encoded biosensors at the exterior of cell surfaces would be a suitable approach; however, it often leads to intracellular accumulation of the tools in vesicular structures and adverse modifications, possibly impairing sensor functionality. To tackle these issues, we generated recombinant fluorescent ion biosensors fused to traptavidin (TAv) specifically coupled to a biotinylated AviTag expressed on the outer cell surface of cells. We show that purified chimeras of TAv and pH-Lemon or GEPII 1.0, Förster resonance energy transfer-based pH and K biosensors, can be immobilized directly and specifically on biotinylated surfaces including glass platelets and intact cells, thereby remaining fully functional for imaging of ion dynamics. The immobilization of recombinant TAv-GEPII 1.0 on the extracellular cell surface of primary cortical rat neurons allowed imaging of excitotoxic glutamate-induced K efflux in vitro. We also performed micropatterning of purified TAv biosensors using a microperfusion system to generate spatially separated TAv-pH-Lemon and TAv-GEPII 1.0 spots for simultaneous pH and K measurements on cell surfaces. Our results suggest that the approach can be greatly expanded by immobilizing various biosensors on extracellular surfaces to quantitatively visualize microenvironmental transport and signaling processes in different cell culture models and other experimental settings.
鉴于离子梯度和通量在生物学中的重要性,以非侵入性的方式在完整细胞的质膜外部局部监测离子是非常理想但具有挑战性的。经典的将遗传编码生物传感器靶向细胞表面的外部是一种合适的方法;然而,它通常会导致工具在内质体结构中的积累和不利的修饰,可能会损害传感器的功能。为了解决这些问题,我们生成了与生物素化 AviTag 特异性偶联的重组荧光离子生物传感器融合物,该 AviTag 表达在细胞外表面。我们表明,pH-Lemon 或 GEPII 1.0 的基于 FRET 的 pH 和 K 生物传感器的 TAav 与纯化嵌合体可以直接和特异性地固定在生物素化表面上,包括玻璃片和完整细胞,从而保持完全功能用于离子动力学的成像。重组 TAv-GEPII 1.0 在原代皮质大鼠神经元的细胞外表面上的固定化允许体外成像兴奋性谷氨酸诱导的 K 外流。我们还使用微灌注系统对纯化的 TAv 生物传感器进行微图案化,以生成空间分离的 TAv-pH-Lemon 和 TAv-GEPII 1.0 斑点,用于在细胞表面上同时进行 pH 和 K 测量。我们的结果表明,通过将各种生物传感器固定在细胞外表面上,可以极大地扩展这种方法,以定量可视化不同细胞培养模型和其他实验设置中的微环境运输和信号转导过程。