Grupo de Diseño de Productos Y Procesos (GDPP), Departamento de Ingeniería Química Y de Alimentos, Universidad de los Andes, 111711, Bogotá, Colombia.
MetCore - Metabolomics Core Facility. Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia.
Sci Rep. 2021 Nov 9;11(1):21904. doi: 10.1038/s41598-021-01427-8.
Cocoa fermentation plays a crucial role in producing flavor and bioactive compounds of high demand for food and nutraceutical industries. Such fermentations are frequently described as a succession of three main groups of microorganisms (i.e., yeast, lactic acid, and acetic acid bacteria), each producing a relevant metabolite (i.e., ethanol, lactic acid, and acetic acid). Nevertheless, this view of fermentation overlooks two critical observations: the role of minor groups of microorganisms to produce valuable compounds and the influence of environmental factors (other than oxygen availability) on their biosynthesis. Dissecting the metabolome during spontaneous cocoa fermentation is a current challenge for the rational design of controlled fermentations. This study evaluates variations in the metabolic fingerprint during spontaneous fermentation of fine flavor cocoa through a multiplatform metabolomics approach. Our data suggested the presence of two phases of differential metabolic activity that correlate with the observed variations on temperature over fermentations: an exothermic and an isothermic phase. We observed a continuous increase in temperature from day 0 to day 4 of fermentation and a significant variation in flavonoids and peptides between phases. While the second phase, from day four on, was characterized for lower metabolic activity, concomitant with small upward and downward fluctuations in temperature. Our work is the first to reveal two phases of metabolic activity concomitant with two temperature phases during spontaneous cocoa fermentation. Here, we proposed a new paradigm of cocoa fermentation that considers the changes in the global metabolic activity over fermentation, thus changing the current paradigm based only on three main groups of microorganism and their primary metabolic products.
可可发酵在生产食品和营养保健品行业所需的风味和生物活性化合物方面起着至关重要的作用。这种发酵通常被描述为三个主要微生物群(即酵母、乳酸和醋酸细菌)的连续作用,每个微生物群都产生一种相关的代谢物(即乙醇、乳酸和醋酸)。然而,这种发酵观点忽略了两个关键的观察结果:少数微生物群体产生有价值的化合物的作用,以及环境因素(除氧气供应外)对其生物合成的影响。解析自然发酵过程中的代谢组是合理设计可控发酵的当前挑战。本研究通过多平台代谢组学方法评估了优质风味可可自然发酵过程中代谢指纹的变化。我们的数据表明,在自发发酵过程中存在两种不同代谢活性的阶段,这与发酵过程中观察到的温度变化有关:放热阶段和等热阶段。我们观察到发酵第 0 天到第 4 天期间温度持续升高,并且在两个阶段之间黄酮类化合物和肽类物质的变化显著。在发酵第 4 天之后的第二个阶段,代谢活性较低,同时温度呈小幅度上下波动。我们的工作首次揭示了可可自然发酵过程中存在两个代谢活性阶段和两个温度阶段。在这里,我们提出了一个新的可可发酵模式,该模式考虑了发酵过程中全局代谢活性的变化,从而改变了仅基于三个主要微生物群及其主要代谢产物的当前模式。