Suppr超能文献

慢性肾脏病患者发生心力衰竭住院的十年风险预测方程:慢性肾功能不全队列研究和动脉粥样硬化多民族研究的结果

Ten-Year Risk-Prediction Equations for Incident Heart Failure Hospitalizations in Chronic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort Study and the Multi-Ethnic Study of Atherosclerosis.

作者信息

Mehta Rupal, Ning Hongyan, Bansal Nisha, Cohen Jordana, Srivastava Anand, Dobre Mirela, Michos Erin D, Rahman Mahboob, Townsend Raymond, Seliger Stephen, Lash James P, Isakova Tamara, Lloyd-Jones Donald M, Khan Sadiya S

机构信息

Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Jesse Brown Veterans Administration Medical Center; Chicago, Illinois.

Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

出版信息

J Card Fail. 2022 Apr;28(4):540-550. doi: 10.1016/j.cardfail.2021.10.007. Epub 2021 Nov 8.

Abstract

BACKGROUND

Heart failure (HF) is a leading contributor to cardiovascular morbidity and mortality in the population with chronic kidney disease (CKD). HF risk prediction tools that use readily available clinical parameters to risk-stratify individuals with CKD are needed.

METHODS

We included Black and White participants aged 30-79 years with CKD stages 2-4 who were enrolled in the Chronic Renal Insufficiency Cohort (CRIC) study and were without self-reported cardiovascular disease. We assessed model performance of the Pooled Cohort Equations to Prevent Heart Failure (PCP-HF) to predict incident hospitalizations due to HF and refit the PCP-HF in the population with CKD by using CRIC data-derived coefficients and survival from CRIC study participants in the CKD population (PCP-HF). We investigated the improvement in HF prediction with inclusion of estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR) into the PCP-HF equations by change in C-statistic, net reclassification improvement (NRI), and integrated discrimination improvement index (IDI). We validated the PCP-HF with and without eGFR and UACR in Multi-Ethnic Study of Atherosclerosis (MESA) participants with CKD.

RESULTS

Among 2328 CRIC Study participants, 340 incident HF hospitalizations occurred over a mean follow-up of 9.5 years. The PCP-HF equations did not perform well in most participants with CKD and had inadequate discrimination and insufficient calibration (C-statistic 0.64-0.71, Greenwood-Nam-D'Agostino (GND) chi-square statistic P value < 0.05), with modest improvement and good calibration after being refit (PCP-HF: C-statistic 0.61-0.78), GND chi-square statistic P value > 0.05). Addition of UACR, but not eGFR, to the refit PCP-HF improved model performance in all race-sex groups (C-statistic [0.73-0.81], GND chi-square statistic P value > 0.05, delta C-statistic ranging from 0.03-0.11 and NRI and IDI P values < 0.01). External validation of the PCP-HF in MESA demonstrated good discrimination and calibration.

CONCLUSIONS

Routinely available clinical data that include UACR in patients with CKD can reliably identify individuals at risk of HF hospitalizations.

摘要

背景

心力衰竭(HF)是慢性肾脏病(CKD)人群心血管疾病发病率和死亡率的主要促成因素。需要使用易于获得的临床参数对CKD个体进行风险分层的HF风险预测工具。

方法

我们纳入了年龄在30 - 79岁、患有2 - 4期CKD的黑人和白人参与者,他们参加了慢性肾功能不全队列(CRIC)研究,且无自我报告的心血管疾病。我们评估了预防心力衰竭合并队列方程(PCP - HF)预测因HF导致的住院事件的模型性能,并通过使用CRIC数据推导的系数和CRIC研究参与者在CKD人群中的生存率,在CKD人群中重新拟合PCP - HF。我们通过C统计量的变化、净重新分类改善(NRI)和综合鉴别改善指数(IDI),研究将估计肾小球滤过率(eGFR)和尿白蛋白与肌酐比值(UACR)纳入PCP - HF方程对HF预测的改善情况。我们在患有CKD的多族裔动脉粥样硬化研究(MESA)参与者中验证了包含和不包含eGFR及UACR的PCP - HF。

结果

在2328名CRIC研究参与者中,在平均9.5年的随访期间发生了340例HF住院事件。PCP - HF方程在大多数CKD参与者中表现不佳,鉴别能力不足且校准不充分(C统计量为0.64 - 0.71,Greenwood - Nam - D'Agostino(GND)卡方统计量P值<0.05);重新拟合后有适度改善且校准良好(PCP - HF:C统计量为0.61 - 0.78,GND卡方统计量P值>0.05)。在重新拟合的PCP - HF中加入UACR而非eGFR可改善所有种族 - 性别组的模型性能(C统计量[0.73 - 0.81],GND卡方统计量P值>0.05,C统计量变化范围为0.03 - 0.11,NRI和IDI P值<0.01)。PCP - HF在MESA中的外部验证显示出良好的鉴别能力和校准。

结论

CKD患者中常规可用的包括UACR的临床数据能够可靠地识别有HF住院风险的个体。

相似文献

2
Incident heart failure in chronic kidney disease: proteomics informs biology and risk stratification.
Eur Heart J. 2024 Aug 9;45(30):2752-2767. doi: 10.1093/eurheartj/ehae288.
3
Kidney Function as Risk Factor and Predictor of Cardiovascular Outcomes and Mortality Among Older Adults.
Am J Kidney Dis. 2021 Mar;77(3):386-396.e1. doi: 10.1053/j.ajkd.2020.09.015. Epub 2020 Nov 14.
4
Kidney Disease Biomarkers Improve Heart Failure Risk Prediction in the General Population.
Circ Heart Fail. 2020 Aug;13(8):e006904. doi: 10.1161/CIRCHEARTFAILURE.120.006904. Epub 2020 Aug 6.
7
Burden and Outcomes of Heart Failure Hospitalizations in Adults With Chronic Kidney Disease.
J Am Coll Cardiol. 2019 Jun 4;73(21):2691-2700. doi: 10.1016/j.jacc.2019.02.071.
8
Development and Validation of Machine Learning-Based Race-Specific Models to Predict 10-Year Risk of Heart Failure: A Multicohort Analysis.
Circulation. 2021 Jun 15;143(24):2370-2383. doi: 10.1161/CIRCULATIONAHA.120.053134. Epub 2021 Apr 13.
10
A predictive model for progression of chronic kidney disease to kidney failure.
JAMA. 2011 Apr 20;305(15):1553-9. doi: 10.1001/jama.2011.451. Epub 2011 Apr 11.

引用本文的文献

1
A simple score, CKMS-BAG, to predict cardiovascular risk with cardiovascular-kidney-metabolic health metrics.
iScience. 2025 May 30;28(7):112780. doi: 10.1016/j.isci.2025.112780. eCollection 2025 Jul 18.
3
Treatment strategies to reduce cardiovascular risk in persons with chronic kidney disease and Type 2 diabetes.
J Intern Med. 2025 May;297(5):460-478. doi: 10.1111/joim.20050. Epub 2024 Dec 31.
4
The Dual Burden: Exploring Cardiovascular Complications in Chronic Kidney Disease.
Biomolecules. 2024 Oct 31;14(11):1393. doi: 10.3390/biom14111393.
7
Albuminuria: An Underappreciated Risk Factor for Cardiovascular Disease.
J Am Heart Assoc. 2024 Jan 16;13(2):e030131. doi: 10.1161/JAHA.123.030131. Epub 2024 Jan 12.
8
New strategies and therapies for the prevention of heart failure in high-risk patients.
Clin Cardiol. 2022 Jun;45 Suppl 1(Suppl 1):S13-S25. doi: 10.1002/clc.23839.

本文引用的文献

1
Development and Validation of Machine Learning-Based Race-Specific Models to Predict 10-Year Risk of Heart Failure: A Multicohort Analysis.
Circulation. 2021 Jun 15;143(24):2370-2383. doi: 10.1161/CIRCULATIONAHA.120.053134. Epub 2021 Apr 13.
2
Adherence to Chronic Kidney Disease Screening Guidelines Among Patients With Type 2 Diabetes in a US Administrative Claims Database.
Mayo Clin Proc. 2021 Apr;96(4):975-986. doi: 10.1016/j.mayocp.2020.07.037. Epub 2021 Mar 12.
3
Predictive Accuracy of Heart Failure-Specific Risk Equations in an Electronic Health Record-Based Cohort.
Circ Heart Fail. 2020 Nov;13(11):e007462. doi: 10.1161/CIRCHEARTFAILURE.120.007462. Epub 2020 Oct 23.
5
Improving risk prediction in heart failure using machine learning.
Eur J Heart Fail. 2020 Jan;22(1):139-147. doi: 10.1002/ejhf.1628. Epub 2019 Nov 12.
6
Burden and Outcomes of Heart Failure Hospitalizations in Adults With Chronic Kidney Disease.
J Am Coll Cardiol. 2019 Jun 4;73(21):2691-2700. doi: 10.1016/j.jacc.2019.02.071.
7
10-Year Risk Equations for Incident Heart Failure in the General Population.
J Am Coll Cardiol. 2019 May 21;73(19):2388-2397. doi: 10.1016/j.jacc.2019.02.057.
9
Heart failure in patients with kidney disease.
Heart. 2017 Dec;103(23):1848-1853. doi: 10.1136/heartjnl-2016-310794. Epub 2017 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验