Mehta Rupal, Ning Hongyan, Bansal Nisha, Cohen Jordana, Srivastava Anand, Dobre Mirela, Michos Erin D, Rahman Mahboob, Townsend Raymond, Seliger Stephen, Lash James P, Isakova Tamara, Lloyd-Jones Donald M, Khan Sadiya S
Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Jesse Brown Veterans Administration Medical Center; Chicago, Illinois.
Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
J Card Fail. 2022 Apr;28(4):540-550. doi: 10.1016/j.cardfail.2021.10.007. Epub 2021 Nov 8.
Heart failure (HF) is a leading contributor to cardiovascular morbidity and mortality in the population with chronic kidney disease (CKD). HF risk prediction tools that use readily available clinical parameters to risk-stratify individuals with CKD are needed.
We included Black and White participants aged 30-79 years with CKD stages 2-4 who were enrolled in the Chronic Renal Insufficiency Cohort (CRIC) study and were without self-reported cardiovascular disease. We assessed model performance of the Pooled Cohort Equations to Prevent Heart Failure (PCP-HF) to predict incident hospitalizations due to HF and refit the PCP-HF in the population with CKD by using CRIC data-derived coefficients and survival from CRIC study participants in the CKD population (PCP-HF). We investigated the improvement in HF prediction with inclusion of estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR) into the PCP-HF equations by change in C-statistic, net reclassification improvement (NRI), and integrated discrimination improvement index (IDI). We validated the PCP-HF with and without eGFR and UACR in Multi-Ethnic Study of Atherosclerosis (MESA) participants with CKD.
Among 2328 CRIC Study participants, 340 incident HF hospitalizations occurred over a mean follow-up of 9.5 years. The PCP-HF equations did not perform well in most participants with CKD and had inadequate discrimination and insufficient calibration (C-statistic 0.64-0.71, Greenwood-Nam-D'Agostino (GND) chi-square statistic P value < 0.05), with modest improvement and good calibration after being refit (PCP-HF: C-statistic 0.61-0.78), GND chi-square statistic P value > 0.05). Addition of UACR, but not eGFR, to the refit PCP-HF improved model performance in all race-sex groups (C-statistic [0.73-0.81], GND chi-square statistic P value > 0.05, delta C-statistic ranging from 0.03-0.11 and NRI and IDI P values < 0.01). External validation of the PCP-HF in MESA demonstrated good discrimination and calibration.
Routinely available clinical data that include UACR in patients with CKD can reliably identify individuals at risk of HF hospitalizations.
心力衰竭(HF)是慢性肾脏病(CKD)人群心血管疾病发病率和死亡率的主要促成因素。需要使用易于获得的临床参数对CKD个体进行风险分层的HF风险预测工具。
我们纳入了年龄在30 - 79岁、患有2 - 4期CKD的黑人和白人参与者,他们参加了慢性肾功能不全队列(CRIC)研究,且无自我报告的心血管疾病。我们评估了预防心力衰竭合并队列方程(PCP - HF)预测因HF导致的住院事件的模型性能,并通过使用CRIC数据推导的系数和CRIC研究参与者在CKD人群中的生存率,在CKD人群中重新拟合PCP - HF。我们通过C统计量的变化、净重新分类改善(NRI)和综合鉴别改善指数(IDI),研究将估计肾小球滤过率(eGFR)和尿白蛋白与肌酐比值(UACR)纳入PCP - HF方程对HF预测的改善情况。我们在患有CKD的多族裔动脉粥样硬化研究(MESA)参与者中验证了包含和不包含eGFR及UACR的PCP - HF。
在2328名CRIC研究参与者中,在平均9.5年的随访期间发生了340例HF住院事件。PCP - HF方程在大多数CKD参与者中表现不佳,鉴别能力不足且校准不充分(C统计量为0.64 - 0.71,Greenwood - Nam - D'Agostino(GND)卡方统计量P值<0.05);重新拟合后有适度改善且校准良好(PCP - HF:C统计量为0.61 - 0.78,GND卡方统计量P值>0.05)。在重新拟合的PCP - HF中加入UACR而非eGFR可改善所有种族 - 性别组的模型性能(C统计量[0.73 - 0.81],GND卡方统计量P值>0.05,C统计量变化范围为0.03 - 0.11,NRI和IDI P值<0.01)。PCP - HF在MESA中的外部验证显示出良好的鉴别能力和校准。
CKD患者中常规可用的包括UACR的临床数据能够可靠地识别有HF住院风险的个体。