School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.
Sensors (Basel). 2021 Oct 28;21(21):7177. doi: 10.3390/s21217177.
Point cloud registration is a key step in the reconstruction of 3D data models. The traditional ICP registration algorithm depends on the initial position of the point cloud. Otherwise, it may get trapped into local optima. In addition, the registration method based on the feature learning of PointNet cannot directly or effectively extract local features. To solve these two problems, this paper proposes SAP-Net, inspired by CorsNet and PointNet++, as an optimized CorsNet. To be more specific, SAP-Net firstly uses the set abstraction layer in PointNet++ as the feature extraction layer and then combines the global features with the initial template point cloud. Finally, PointNet is used as the transform prediction layer to obtain the six parameters required for point cloud registration directly, namely the rotation matrix and the translation vector. Experiments on the ModelNet40 dataset and real data show that SAP-Net not only outperforms ICP and CorsNet on both seen and unseen categories of the point cloud but also has stronger robustness.
点云配准是三维数据模型重建的关键步骤。传统的 ICP 配准算法依赖于点云的初始位置。否则,它可能会陷入局部最优解。此外,基于 PointNet 特征学习的配准方法不能直接或有效地提取局部特征。为了解决这两个问题,本文提出了 SAP-Net,它受 CorsNet 和 PointNet++的启发,是 CorsNet 的优化版本。具体来说,SAP-Net 首先使用 PointNet++中的集抽象层作为特征提取层,然后将全局特征与初始模板点云相结合。最后,使用 PointNet 作为变换预测层,直接获得点云配准所需的六个参数,即旋转矩阵和平移向量。在 ModelNet40 数据集和真实数据上的实验表明,SAP-Net 在点云的可见和不可见类别上不仅优于 ICP 和 CorsNet,而且具有更强的鲁棒性。