Suppr超能文献

人工智能在机械通气中的应用:设计、报告标准和偏差的系统评价。

Artificial intelligence for mechanical ventilation: systematic review of design, reporting standards, and bias.

机构信息

Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, UK.

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK; Institute of Global Health Innovation, Imperial College London, London, UK.

出版信息

Br J Anaesth. 2022 Feb;128(2):343-351. doi: 10.1016/j.bja.2021.09.025. Epub 2021 Nov 9.

Abstract

BACKGROUND

Artificial intelligence (AI) has the potential to personalise mechanical ventilation strategies for patients with respiratory failure. However, current methodological deficiencies could limit clinical impact. We identified common limitations and propose potential solutions to facilitate translation of AI to mechanical ventilation of patients.

METHODS

A systematic review was conducted in MEDLINE, Embase, and PubMed Central to February 2021. Studies investigating the application of AI to patients undergoing mechanical ventilation were included. Algorithm design and adherence to reporting standards were assessed with a rubric combining published guidelines, satisfying the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis [TRIPOD] statement. Risk of bias was assessed by using the Prediction model Risk Of Bias ASsessment Tool (PROBAST), and correspondence with authors to assess data and code availability.

RESULTS

Our search identified 1,342 studies, of which 95 were included: 84 had single-centre, retrospective study design, with only one randomised controlled trial. Access to data sets and code was severely limited (unavailable in 85% and 87% of studies, respectively). On request, data and code were made available from 12 and 10 authors, respectively, from a list of 54 studies published in the last 5 yr. Ethnicity was frequently under-reported 18/95 (19%), as was model calibration 17/95 (18%). The risk of bias was high in 89% (85/95) of the studies, especially because of analysis bias.

CONCLUSIONS

Development of algorithms should involve prospective and external validation, with greater code and data availability to improve confidence in and translation of this promising approach.

TRIAL REGISTRATION NUMBER

PROSPERO - CRD42021225918.

摘要

背景

人工智能(AI)有可能为呼吸衰竭患者实现机械通气策略的个性化。然而,当前方法学上的缺陷可能会限制其临床影响。我们确定了常见的局限性,并提出了一些潜在的解决方案,以促进 AI 在机械通气患者中的应用。

方法

我们对 MEDLINE、Embase 和 PubMed Central 中的文献进行了系统检索,检索时间截至 2021 年 2 月。纳入研究为应用 AI 对接受机械通气的患者进行研究的文章。我们采用结合了已发表指南的评分表来评估算法设计和报告标准,满足个体预后或诊断的多变量预测模型的透明报告 [TRIPOD] 声明。使用预测模型风险偏倚评估工具(PROBAST)评估风险偏倚,并与作者联系以评估数据和代码的可用性。

结果

我们的检索共识别出 1342 篇研究,其中 95 篇被纳入:84 项研究为单中心、回顾性研究设计,仅有 1 项随机对照试验。数据集和代码的获取受到严重限制(分别有 85%和 87%的研究无法获取)。应要求,从过去 5 年发表的 54 篇研究中列出的 12 项和 10 项研究分别向 12 项和 10 项研究的作者提供了数据和代码。18/95(19%)项研究中经常未报告种族情况,17/95(18%)项研究中经常未报告模型校准情况。89%(85/95)的研究存在高风险偏倚,尤其是因为分析偏倚。

结论

算法的开发应包括前瞻性和外部验证,同时提高代码和数据的可用性,以提高对这一有前途方法的信心和转化。

试验注册

PROSPERO-CRD42021225918。

相似文献

5
Prone position for acute respiratory failure in adults.成人急性呼吸衰竭的俯卧位
Cochrane Database Syst Rev. 2015 Nov 13;2015(11):CD008095. doi: 10.1002/14651858.CD008095.pub2.
7
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease.肌萎缩侧索硬化症/运动神经元病的机械通气
Cochrane Database Syst Rev. 2017 Oct 6;10(10):CD004427. doi: 10.1002/14651858.CD004427.pub4.

引用本文的文献

4
Setting the ventilator with AI support: challenges and perspectives.在人工智能支持下设置呼吸机:挑战与展望。
Intensive Care Med. 2025 Mar;51(3):593-595. doi: 10.1007/s00134-024-07778-w. Epub 2025 Jan 20.
8
Artificial Intelligence for Mechanical Ventilation: A Transformative Shift in Critical Care.用于机械通气的人工智能:重症监护领域的变革性转变。
Ther Adv Pulm Crit Care Med. 2024 Nov 11;19:29768675241298918. doi: 10.1177/29768675241298918. eCollection 2024 Jan-Dec.

本文引用的文献

1
Race representation matters in cancer care.种族代表性在癌症护理中很重要。
Lancet Digit Health. 2021 Jul;3(7):e408. doi: 10.1016/S2589-7500(21)00113-8.
3
Who does the model learn from?该模型向谁学习?
Lancet Digit Health. 2021 May;3(5):e275-e276. doi: 10.1016/S2589-7500(21)00057-1. Epub 2021 Apr 12.
9
The future of digital health with federated learning.联合学习助力数字健康的未来。
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验