Suppr超能文献

从遗传网络的读出中交易位。

Trading bits in the readout from a genetic network.

机构信息

Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544;

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.

出版信息

Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2109011118.

Abstract

In the regulation of gene expression, information of relevance to the organism is represented by the concentrations of transcription factor molecules. To extract this information the cell must effectively "measure" these concentrations, but there are physical limits to the precision of these measurements. We use the gap gene network in the early fly embryo as an example of the tradeoff between the precision of concentration measurements and the transmission of relevant information. For thresholded measurements we find that lower thresholds are more important, and fine tuning is not required for near-optimal information transmission. We then consider general sensors, constrained only by a limit on their information capacity, and find that thresholded sensors can approach true information theoretic optima. The information theoretic approach allows us to identify the optimal sensor for the entire gap gene network and to argue that the physical limitations of sensing necessitate the observed multiplicity of enhancer elements, with sensitivities to combinations rather than single transcription factors.

摘要

在基因表达的调控中,与生物体相关的信息由转录因子分子的浓度来表示。为了提取这些信息,细胞必须有效地“测量”这些浓度,但这些测量的精度存在物理限制。我们以早期果蝇胚胎中的间隙基因网络为例,探讨了浓度测量精度与相关信息传递之间的权衡。对于门限测量,我们发现较低的门限值更为重要,并且不需要进行微调即可实现近乎最优的信息传递。然后,我们考虑了一般的传感器,它们仅受到信息容量的限制,发现门限传感器可以接近真正的信息论最优。信息论方法使我们能够确定整个间隙基因网络的最佳传感器,并证明感知的物理限制需要观察到的增强子元件的多样性,对组合而不是单个转录因子具有敏感性。

相似文献

1
Trading bits in the readout from a genetic network.
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2109011118.
2
Positional information, in bits.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16301-8. doi: 10.1073/pnas.1315642110. Epub 2013 Oct 2.
3
How does an organism extract relevant information from transcription factor concentrations?
Biochem Soc Trans. 2022 Oct 31;50(5):1365-1376. doi: 10.1042/BST20220333.
4
Comparative analysis of regulatory information and circuits across distant species.
Nature. 2014 Aug 28;512(7515):453-6. doi: 10.1038/nature13668.
5
Optimizing information flow in small genetic networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031920. doi: 10.1103/PhysRevE.80.031920. Epub 2009 Sep 29.
7
Optimal Decoding of Cellular Identities in a Genetic Network.
Cell. 2019 Feb 7;176(4):844-855.e15. doi: 10.1016/j.cell.2019.01.007. Epub 2019 Jan 31.
8
Modeling gene regulation from paired expression and chromatin accessibility data.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):E4914-E4923. doi: 10.1073/pnas.1704553114. Epub 2017 Jun 2.
10
Controlling gene expression timing through gene regulatory architecture.
PLoS Comput Biol. 2022 Jan 18;18(1):e1009745. doi: 10.1371/journal.pcbi.1009745. eCollection 2022 Jan.

引用本文的文献

1
Optimization and variability can coexist.
ArXiv. 2025 May 29:arXiv:2505.23398v1.
2
Dynamics of positional information in the vertebrate neural tube.
J R Soc Interface. 2024 Dec;21(221):20240414. doi: 10.1098/rsif.2024.0414. Epub 2024 Dec 11.
3
Information content and optimization of self-organized developmental systems.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2322326121. doi: 10.1073/pnas.2322326121. Epub 2024 May 31.
4
Trade-offs between cost and information in cellular prediction.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2303078120. doi: 10.1073/pnas.2303078120. Epub 2023 Oct 4.
7
Deduction of signaling mechanisms from cellular responses to multiple cues.
NPJ Syst Biol Appl. 2022 Nov 30;8(1):48. doi: 10.1038/s41540-022-00262-5.
8
How does an organism extract relevant information from transcription factor concentrations?
Biochem Soc Trans. 2022 Oct 31;50(5):1365-1376. doi: 10.1042/BST20220333.
9
Latent space of a small genetic network: Geometry of dynamics and information.
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2113651119. doi: 10.1073/pnas.2113651119. Epub 2022 Jun 22.
10
Patterning, From Conifers to Consciousness: Turing's Theory and Order From Fluctuations.
Front Cell Dev Biol. 2022 May 3;10:871950. doi: 10.3389/fcell.2022.871950. eCollection 2022.

本文引用的文献

1
Rapid Dynamics of Signal-Dependent Transcriptional Repression by Capicua.
Dev Cell. 2020 Mar 23;52(6):794-801.e4. doi: 10.1016/j.devcel.2020.02.004. Epub 2020 Mar 5.
3
Physical Limit to Concentration Sensing in a Changing Environment.
Phys Rev Lett. 2019 Nov 8;123(19):198101. doi: 10.1103/PhysRevLett.123.198101.
4
Non-monotonic auto-regulation in single gene circuits.
PLoS One. 2019 May 2;14(5):e0216089. doi: 10.1371/journal.pone.0216089. eCollection 2019.
5
Optimal Decoding of Cellular Identities in a Genetic Network.
Cell. 2019 Feb 7;176(4):844-855.e15. doi: 10.1016/j.cell.2019.01.007. Epub 2019 Jan 31.
6
Developmental enhancers and chromosome topology.
Science. 2018 Sep 28;361(6409):1341-1345. doi: 10.1126/science.aau0320.
7
Coactivator condensation at super-enhancers links phase separation and gene control.
Science. 2018 Jul 27;361(6400). doi: 10.1126/science.aar3958. Epub 2018 Jun 21.
8
9
The Deterministic Information Bottleneck.
Neural Comput. 2017 Jun;29(6):1611-1630. doi: 10.1162/NECO_a_00961. Epub 2017 Apr 14.
10
Intrinsic limits to gene regulation by global crosstalk.
Nat Commun. 2016 Aug 4;7:12307. doi: 10.1038/ncomms12307.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验