Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544;
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.
Proc Natl Acad Sci U S A. 2021 Nov 16;118(46). doi: 10.1073/pnas.2109011118.
In the regulation of gene expression, information of relevance to the organism is represented by the concentrations of transcription factor molecules. To extract this information the cell must effectively "measure" these concentrations, but there are physical limits to the precision of these measurements. We use the gap gene network in the early fly embryo as an example of the tradeoff between the precision of concentration measurements and the transmission of relevant information. For thresholded measurements we find that lower thresholds are more important, and fine tuning is not required for near-optimal information transmission. We then consider general sensors, constrained only by a limit on their information capacity, and find that thresholded sensors can approach true information theoretic optima. The information theoretic approach allows us to identify the optimal sensor for the entire gap gene network and to argue that the physical limitations of sensing necessitate the observed multiplicity of enhancer elements, with sensitivities to combinations rather than single transcription factors.
在基因表达的调控中,与生物体相关的信息由转录因子分子的浓度来表示。为了提取这些信息,细胞必须有效地“测量”这些浓度,但这些测量的精度存在物理限制。我们以早期果蝇胚胎中的间隙基因网络为例,探讨了浓度测量精度与相关信息传递之间的权衡。对于门限测量,我们发现较低的门限值更为重要,并且不需要进行微调即可实现近乎最优的信息传递。然后,我们考虑了一般的传感器,它们仅受到信息容量的限制,发现门限传感器可以接近真正的信息论最优。信息论方法使我们能够确定整个间隙基因网络的最佳传感器,并证明感知的物理限制需要观察到的增强子元件的多样性,对组合而不是单个转录因子具有敏感性。