Suppr超能文献

生成对抗网络在心脏病学中的应用

Generative Adversarial Networks in Cardiology.

机构信息

Groupe IFTIM, Laboratoire ImViA, UFR Sciences et Techniques, Université de Bourgogne, Dijon, France.

Groupe IFTIM, Laboratoire ImViA, UFR Sciences et Techniques, Université de Bourgogne, Dijon, France; Medical Imaging Department, University Hospital of Dijon, Dijon, France.

出版信息

Can J Cardiol. 2022 Feb;38(2):196-203. doi: 10.1016/j.cjca.2021.11.003. Epub 2021 Nov 13.

Abstract

Generative adversarial networks (GANs) are state-of-the-art neural network models used to synthesise images and other data. GANs brought a considerable improvement to the quality of synthetic data, quickly becoming the standard for data-generation tasks. In this work, we summarise the applications of GANs in the field of cardiology, including generation of realistic cardiac images, electrocardiography signals, and synthetic electronic health records. The utility of GAN-generated data is discussed with respect to research, clinical care, and academia. And we present illustrative examples of our GAN-generated cardiac magnetic resonance and echocardiography images, showing the evolution in image quality across 6 different models, which have become almost indistinguishable from real images. Finally, we discuss future applications, such as modality translation or patient trajectory modelling. Moreover, we discuss the pending challenges that GANs need to overcome, namely, their training dynamics, the medical fidelity or the data regulations and ethics questions, to become integrated in cardiology workflows.

摘要

生成对抗网络(GAN)是用于合成图像和其他数据的最先进的神经网络模型。GAN 极大地提高了合成数据的质量,迅速成为数据生成任务的标准。在这项工作中,我们总结了 GAN 在心脏病学领域的应用,包括生成逼真的心脏图像、心电图信号和合成电子健康记录。讨论了 GAN 生成数据在研究、临床护理和学术界的应用。我们展示了 GAN 生成的心脏磁共振和超声心动图图像的示例,展示了 6 种不同模型的图像质量的演变,这些模型已经几乎与真实图像无法区分。最后,我们讨论了未来的应用,如模态转换或患者轨迹建模。此外,我们还讨论了 GAN 需要克服的待解决的挑战,例如其训练动态、医学保真度或数据法规和道德问题,以将其集成到心脏病学工作流程中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验