Suppr超能文献

光激发的 NO 使光激活的 NO 气体传感中的响应和恢复动力学加速。

Photoexcited NO Enables Accelerated Response and Recovery Kinetics in Light-Activated NO Gas Sensing.

机构信息

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.

Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

ACS Sens. 2021 Dec 24;6(12):4389-4397. doi: 10.1021/acssensors.1c01694. Epub 2021 Nov 16.

Abstract

Slow response and recovery kinetics is a major challenge for practical room-temperature NO gas sensing. Here, we report the use of visible light illumination to significantly shorten the response and recovery times of a PbSe quantum dot (QD) gel sensor by 21% (to 27 s) and 63% (to 102 s), respectively. When combined with its high response (0.04%/ppb) and ultralow limit of detection (3 ppb), the reduction in response and recovery time makes the PbSe QD gel sensor among the best p-type room-temperature NO sensors reported to date. A combined experimental and theoretical investigation reveals that the accelerated response and recovery time is primarily due to photoexcitation of NO gaseous molecules and adsorbed NO on the gel surface, rather than the excitation of the semiconductor sensing material, as suggested by the currently prevailing light-activated gas-sensing theory. Furthermore, we find that the extent of improvement attained in the recovery speed also depends on the distribution of excited electrons in the adsorbed NO/QD gel system. This work suggests that the design of light-activated sensor platforms may benefit from a careful assessment of the photophysics of the analyte in the gas phase and when adsorbed onto the semiconductor surface.

摘要

室温下 NO 气体传感的主要挑战是响应和恢复动力学缓慢。在这里,我们报告了可见光照射的使用,可使 PbSe 量子点 (QD) 凝胶传感器的响应和恢复时间分别缩短 21%(至 27 s)和 63%(至 102 s)。当与高响应(0.04%/ppb)和超低检测限(3 ppb)相结合时,响应和恢复时间的缩短使 PbSe QD 凝胶传感器成为迄今为止报道的最佳 p 型室温 NO 传感器之一。实验和理论的综合研究表明,加速的响应和恢复时间主要是由于 NO 气态分子和吸附在凝胶表面上的 NO 的光激发,而不是半导体传感材料的激发,这与当前流行的光激活气体传感理论所暗示的相反。此外,我们发现恢复速度的改善程度也取决于吸附在 NO/QD 凝胶系统上的激发电子的分布。这项工作表明,光激活传感器平台的设计可能受益于对气相中和吸附在半导体表面上的分析物的光物理的仔细评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验