Suppr超能文献

通过 RNA 世界的原细胞模型中的功能多样化向复杂性增加的进化。

Evolution towards increasing complexity through functional diversification in a protocell model of the RNA world.

机构信息

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.

出版信息

Proc Biol Sci. 2021 Nov 24;288(1963):20212098. doi: 10.1098/rspb.2021.2098. Epub 2021 Nov 17.

Abstract

The encapsulation of genetic material inside compartments together with the creation and sustenance of functionally diverse internal components are likely to have been key steps in the formation of 'live', replicating protocells in an RNA world. Several experiments have shown that RNA encapsulated inside lipid vesicles can lead to vesicular growth and division through physical processes alone. Replication of RNA inside such vesicles can produce a large number of RNA strands. Yet, the impact of such replication processes on the emergence of the first ribozymes inside such protocells and on the subsequent evolution of the protocell population remains an open question. In this paper, we present a model for the evolution of protocells with functionally diverse ribozymes. Distinct ribozymes can be created with small probabilities during the error-prone RNA replication process via the rolling circle mechanism. We identify the conditions that can synergistically enhance the number of different ribozymes inside a protocell and allow functionally diverse protocells containing multiple ribozymes to dominate the population. Our work demonstrates the existence of an effective pathway towards increasing complexity of protocells that might have eventually led to the origin of life in an RNA world.

摘要

将遗传物质包裹在隔室中,同时创造和维持功能多样的内部组件,这可能是在 RNA 世界中形成“有生命”、复制原细胞的关键步骤。几项实验表明,包裹在脂质泡中的 RNA 仅通过物理过程就可以导致泡囊的生长和分裂。在这种泡囊中复制 RNA 可以产生大量的 RNA 链。然而,这种复制过程对第一批核酶在原细胞中的出现以及随后原细胞群体的进化的影响仍然是一个悬而未决的问题。在本文中,我们提出了一个具有功能多样核酶的原细胞进化模型。在易错的 RNA 复制过程中,通过滚环机制,可以以小概率产生不同的核酶。我们确定了可以协同增强原细胞内不同核酶数量的条件,并允许含有多个核酶的功能多样的原细胞主导群体。我们的工作证明了一种能够提高原细胞复杂性的有效途径,这种途径可能最终导致了 RNA 世界中生命的起源。

相似文献

1
Evolution towards increasing complexity through functional diversification in a protocell model of the RNA world.
Proc Biol Sci. 2021 Nov 24;288(1963):20212098. doi: 10.1098/rspb.2021.2098. Epub 2021 Nov 17.
2
Protocell Effects on RNA Folding, Function, and Evolution.
Acc Chem Res. 2024 Aug 6;57(15):2058-2066. doi: 10.1021/acs.accounts.4c00174. Epub 2024 Jul 15.
4
Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2025054118.
5
RNA-Catalyzed RNA Ligation within Prebiotically Plausible Model Protocells.
Chemistry. 2023 Aug 1;29(43):e202301376. doi: 10.1002/chem.202301376. Epub 2023 Jun 29.
6
The RNA-DNA world and the emergence of DNA-encoded heritable traits.
RNA Biol. 2024 Jan;21(1):1-9. doi: 10.1080/15476286.2024.2355391. Epub 2024 May 24.
7
Vesicle encapsulation stabilizes intermolecular association and structure formation of functional RNA and DNA.
Curr Biol. 2022 Jan 10;32(1):86-96.e6. doi: 10.1016/j.cub.2021.10.047. Epub 2021 Nov 10.
8
Evolution of the division of labor between genes and enzymes in the RNA world.
PLoS Comput Biol. 2014 Dec 4;10(12):e1003936. doi: 10.1371/journal.pcbi.1003936. eCollection 2014 Dec.

引用本文的文献

1
RNA World with Inhibitors.
Entropy (Basel). 2024 Nov 23;26(12):1012. doi: 10.3390/e26121012.
2
The RNA-DNA world and the emergence of DNA-encoded heritable traits.
RNA Biol. 2024 Jan;21(1):1-9. doi: 10.1080/15476286.2024.2355391. Epub 2024 May 24.
3
Coevolution of reproducers and replicators at the origin of life and the conditions for the origin of genomes.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2301522120. doi: 10.1073/pnas.2301522120. Epub 2023 Mar 30.
4
Rolling Circles as a Means of Encoding Genes in the RNA World.
Life (Basel). 2022 Sep 2;12(9):1373. doi: 10.3390/life12091373.

本文引用的文献

2
Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life.
J Theor Biol. 2021 Oct 21;527:110822. doi: 10.1016/j.jtbi.2021.110822. Epub 2021 Jun 29.
4
Emergence of ribozyme and tRNA-like structures from mineral-rich muddy pools on prebiotic earth.
J Theor Biol. 2020 Dec 7;506:110446. doi: 10.1016/j.jtbi.2020.110446. Epub 2020 Aug 13.
5
Protocells.
Curr Biol. 2020 May 18;30(10):R482-R485. doi: 10.1016/j.cub.2020.03.038.
6
The Hot Spring Hypothesis for an Origin of Life.
Astrobiology. 2020 Apr;20(4):429-452. doi: 10.1089/ast.2019.2045. Epub 2019 Dec 16.
7
Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides.
Science. 2019 Oct 4;366(6461):76-82. doi: 10.1126/science.aax2747.
9
Horizontal transfer between loose compartments stabilizes replication of fragmented ribozymes.
PLoS Comput Biol. 2019 Jun 6;15(6):e1007094. doi: 10.1371/journal.pcbi.1007094. eCollection 2019 Jun.
10
Catalysis of Template-Directed Nonenzymatic RNA Copying by Iron(II).
J Am Chem Soc. 2018 Nov 7;140(44):15016-15021. doi: 10.1021/jacs.8b09617. Epub 2018 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验