Parisio Francesco, Yoshioka Keita, Sakaguchi Kiyotoshi, Goto Ryota, Miura Takahiro, Pramudyo Eko, Ishibashi Takuya, Watanabe Noriaki
Chair of Soil Mechanics and Foundation Engineering, Technische Universitaet Bergakademie, Freiberg, Germany.
Department of Environmental Informatics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Sci Rep. 2021 Nov 16;11(1):22300. doi: 10.1038/s41598-021-01388-y.
Developing high-enthalpy geothermal systems requires a sufficiently permeable formation to extract energy through fluid circulation. Injection experiments above water's critical point have shown that fluid flow can generate a network of highly conductive tensile cracks. However, what remains unclear is the role played by fluid and solid rheology on the formation of a dense crack network. The decrease of fluid viscosity with temperature and the thermally activated visco-plasticity in rock are expected to change the deformation mechanisms and could prevent the formation of fractures. To isolate the solid rheological effects from the fluid ones and the associated poromechanics, we devise a hydro-fracture experimental program in a non-porous material, polymethyl methacrylate (PMMA). In the brittle regime, we observe rotating cracks and complex fracture patterns if a non-uniform stress distribution is introduced in the samples. We observe an increase of ductility with temperature, hampering the propagation of hydraulic fractures close to the glass transition temperature of PMMA, which acts as a limit for brittle fracture propagation. Above the glass transition temperature, acoustic emission energy drops of several orders of magnitude. Our findings provide a helpful guidance for future studies of hydro-fracturing of supercritical geothermal systems.
开发高焓地热系统需要有足够渗透性的地层,以便通过流体循环来提取能量。在水的临界点以上进行的注入实验表明,流体流动能够产生一个高导电性的拉伸裂缝网络。然而,流体和固体流变学在致密裂缝网络形成过程中所起的作用仍不明确。随着温度升高流体粘度降低,以及岩石中的热激活粘塑性,预计会改变变形机制,并可能阻止裂缝的形成。为了将固体流变效应与流体效应以及相关的孔隙力学效应区分开来,我们在一种无孔材料聚甲基丙烯酸甲酯(PMMA)中设计了一个水力压裂实验方案。在脆性状态下,如果在样品中引入不均匀的应力分布,我们会观察到旋转裂缝和复杂的断裂模式。我们观察到随着温度升高延展性增加,这阻碍了水力裂缝在接近PMMA玻璃化转变温度时的扩展,而PMMA的玻璃化转变温度成为脆性断裂扩展的一个限制。在玻璃化转变温度以上,声发射能量下降几个数量级。我们的研究结果为未来超临界地热系统水力压裂的研究提供了有益的指导。