Low Aloysius Y T, Goldstein Nitsan, Gaunt Jessica R, Huang Kuei-Pin, Zainolabidin Norliyana, Yip Alaric K K, Carty Jamie R E, Choi Ju Y, Miller Alekso M, Ho Helen S T, Lenherr Clara, Baltar Nicholas, Azim Eiman, Sessions October M, Ch'ng Toh Hean, Bruce Amanda S, Martin Laura E, Halko Mark A, Brady Roscoe O, Holsen Laura M, Alhadeff Amber L, Chen Albert I, Betley J Nicholas
Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
LKC School of Medicine, Nanyang Technological University, Singapore, Singapore.
Nature. 2021 Dec;600(7888):269-273. doi: 10.1038/s41586-021-04143-5. Epub 2021 Nov 17.
The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.
大脑是体重稳态的所在部位。然而,我们无法控制肥胖患病率的不断上升,这凸显出有必要超越传统的进食途径,以拓宽我们对体重控制的理解。在这里,我们采用了一种反向转化方法,来识别并从解剖学、分子学和功能学角度对促进饱腹感的神经集群进行表征。基于任务的无偏功能磁共振成像显示,在患有以食欲亢进为特征的遗传疾病的人群中,小脑对食物的反应存在显著差异。对小鼠的转录组分析揭示了前深小脑核(aDCN)中分子和拓扑结构不同的神经元,这些神经元在肠道进食或输注营养物质时被激活。选择性激活aDCN神经元可通过减小餐量大幅减少食物摄入量,而不会对代谢率产生代偿性变化。我们发现,aDCN的活动通过增加纹状体多巴胺水平并减弱对后续食物消耗的阶段性多巴胺反应来终止食物摄入。我们的研究定义了一个保守的饱腹感中心,它可能代表了治疗暴饮暴食的一个新的治疗靶点,并强调了“床边到 bench”方法在识别影响行为的神经回路方面的实用性。