Suppr超能文献

B细胞非霍奇金淋巴瘤中弥漫性大B细胞淋巴瘤细胞焦亡的阴暗面:介导特定炎症微环境

The Dark Side of Pyroptosis of Diffuse Large B-Cell Lymphoma in B-Cell Non-Hodgkin Lymphoma: Mediating the Specific Inflammatory Microenvironment.

作者信息

Wang Wei, Xu Shi-Wen, Teng Ya, Zhu Min, Guo Qun-Yi, Wang Yuan-Wen, Mao Xin-Li, Li Shao-Wei, Luo Wen-da

机构信息

Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.

Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.

出版信息

Front Cell Dev Biol. 2021 Nov 5;9:779123. doi: 10.3389/fcell.2021.779123. eCollection 2021.

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a common aggressive B-cell non-Hodgkin lymphoma (B-NHL). While combined chemotherapy has improved the outcomes of DLBCL, it remains a highly detrimental disease. Pyroptosis, an inflammatory programmed cell death, is considered to have both tumor-promoting and tumor-suppressing effects. The role of pyroptosis in DLBCL has been gradually appreciated, but its value needs further investigation. We analyzed mutations and copy number variation (CNV) alterations of pyroptosis-related genes (PRGs) from The Cancer Genome Atlas (TCGA) cohort and evaluated the differences in expression in normal B cells and DLBCL patients in two Gene Expression Omnibus (GEO) datasets (GSE12195 and GSE56315). Based on the expression of 52 PRGs, we divided 421 DLBCL patients from the GSE31312 dataset into distinct clusters using consensus clustering. The Kaplan-Meier method was used to prognosis among the three clusters, and GSVA was used to explore differences in the biological functions. ESTIMATE and single-sample gene-set enrichment analysis (ssGSEA) were used to analyze the tumor immune microenvironment (TME) in different clusters. A risk score signature was developed using a univariate survival analysis and multivariate regression analysis, and the reliability and validity of the signature were verified. By combining the signature with clinical factors, a nomogram was established to predict the prognosis of DLBCL patients. The alluvial diagram and correlation matrix were used to explore the relationship between pyroptosis risk score, clinical features and TME. A large proportion of PRGs are dysregulated in DLBCL and associated with the prognosis. We found three distinct pyroptosis-related clusters (cluster A, B, and C) that differed significantly with regard to the prognosis, biological process, clinical characteristics, chemotherapeutic drug sensitivity, and TME. Furthermore, we developed a risk score signature that effectively differentiates high and low-risk patients. The nomogram combining this signature with several clinical indicators showed an excellent ability to predict the prognosis of DCBCL patients. This work demonstrates that pyroptosis plays an important role in the diversity and complexity of the TME in DLBCL. The risk signature of pyroptosis is a promising predictive tool. A correct and comprehensive assessment of the mode of action of pyroptosis in individuals will help guide more effective treatment.

摘要

弥漫性大B细胞淋巴瘤(DLBCL)是一种常见的侵袭性B细胞非霍奇金淋巴瘤(B-NHL)。虽然联合化疗改善了DLBCL的治疗结果,但它仍然是一种危害极大的疾病。细胞焦亡是一种炎症性程序性细胞死亡,被认为具有促肿瘤和抑肿瘤双重作用。细胞焦亡在DLBCL中的作用已逐渐受到重视,但其价值仍需进一步研究。我们分析了来自癌症基因组图谱(TCGA)队列的细胞焦亡相关基因(PRG)的突变和拷贝数变异(CNV)改变,并评估了两个基因表达综合数据库(GEO)数据集(GSE12195和GSE56315)中正常B细胞和DLBCL患者的基因表达差异。基于52个PRG基因表达情况,我们使用一致性聚类方法将GSE31312数据集中的421例DLBCL患者分为不同的聚类。采用Kaplan-Meier法对三个聚类进行预后分析,并使用基因集变异分析(GSVA)来探究生物学功能差异。采用ESTIMATE和单样本基因集富集分析(ssGSEA)来分析不同聚类中的肿瘤免疫微环境(TME)。通过单因素生存分析和多因素回归分析建立了风险评分特征,并验证了该特征的可靠性和有效性。通过将该特征与临床因素相结合,建立了一个列线图来预测DLBCL患者的预后。冲积图和相关矩阵用于探究细胞焦亡风险评分、临床特征和TME之间的关系。大量PRG在DLBCL中表达失调并与预后相关。我们发现了三个不同的细胞焦亡相关聚类(A、B和C聚类),它们在预后、生物学过程、临床特征、化疗药物敏感性和TME方面存在显著差异。此外,我们开发了一种风险评分特征,能够有效区分高危和低危患者。将该特征与几个临床指标相结合的列线图显示出对DCBCL患者预后的出色预测能力。这项工作表明细胞焦亡在DLBCL的TME多样性和复杂性中起着重要作用。细胞焦亡风险特征是一种很有前景的预测工具。对个体细胞焦亡作用模式进行正确而全面的评估将有助于指导更有效的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ba/8602351/75df56dde19f/fcell-09-779123-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验