Lou Carolyn, Habes Mohamad, Illenberger Nicholas A, Ezzati Ali, Lipton Richard B, Shaw Pamela A, Stephens-Shields Alisa J, Akbari Hamed, Doshi Jimit, Davatzikos Christos, Shinohara Russell T
Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
Brain Commun. 2021 Nov 3;3(4):fcab264. doi: 10.1093/braincomms/fcab264. eCollection 2021.
A key factor in designing randomized clinical trials is the sample size required to achieve a particular level of power to detect the benefit of a treatment. Sample size calculations depend upon the expected benefits of a treatment (effect size), the accuracy of measurement of the primary outcome, and the level of power specified by the investigators. In this study, we show that radiomic models, which leverage complex brain MRI patterns and machine learning, can be utilized in clinical trials with protocols that incorporate baseline MR imaging to significantly increase statistical power to detect treatment effects. Akin to the historical control paradigm, we propose to utilize a radiomic prediction model to generate a pseudo-control sample for each individual in the trial of interest. Because the variability of expected outcome across patients can mask our ability to detect treatment effects, we can increase the power to detect a treatment effect in a clinical trial by reducing that variability through using radiomic predictors as surrogates. We illustrate this method with simulations based on data from two cohorts in different neurologic diseases, Alzheimer's disease and glioblastoma multiforme. We present sample size requirements across a range of effect sizes using conventional analysis and models that include a radiomic predictor. For our Alzheimer's disease cohort, at an effect size of 0.35, total sample size requirements for 80% power declined from 246 to 212 for the endpoint cognitive decline. For our glioblastoma multiforme cohort, at an effect size of 1.65 with the endpoint survival time, total sample size requirements declined from 128 to 74. This methodology can decrease the required sample sizes by as much as 50%, depending on the strength of the radiomic predictor. The power of this method grows with increased accuracy of radiomic prediction, and furthermore, this method is most helpful when treatment effect sizes are small. Neuroimaging biomarkers are a powerful and increasingly common suite of tools that are, in many cases, highly predictive of disease outcomes. Here, we explore the possibility of using MRI-based radiomic biomarkers for the purpose of improving statistical power in clinical trials in the contexts of brain cancer and prodromal Alzheimer's disease. These methods can be applied to a broad range of neurologic diseases using a broad range of predictors of outcome to make clinical trials more efficient.
设计随机临床试验的一个关键因素是为实现特定的检验效能水平以检测治疗益处所需的样本量。样本量计算取决于治疗的预期益处(效应量)、主要结局的测量准确性以及研究者指定的效能水平。在本研究中,我们表明,利用复杂脑MRI模式和机器学习的放射组学模型可用于包含基线MR成像的临床试验方案中,以显著提高检测治疗效果的统计效能。类似于历史对照范式,我们建议利用放射组学预测模型为感兴趣试验中的每个个体生成一个虚拟对照样本。由于患者预期结局的变异性可能掩盖我们检测治疗效果的能力,我们可以通过使用放射组学预测因子作为替代指标来降低这种变异性,从而提高临床试验中检测治疗效果的效能。我们基于来自两种不同神经系统疾病(阿尔茨海默病和多形性胶质母细胞瘤)的两个队列的数据进行模拟来说明这种方法。我们使用传统分析方法以及包含放射组学预测因子的模型,给出了一系列效应量下的样本量要求。对于我们的阿尔茨海默病队列,在效应量为0.35时,对于终点认知衰退,80%检验效能所需的总样本量从246降至212。对于我们的多形性胶质母细胞瘤队列,在效应量为1.65且终点为生存时间时,总样本量要求从128降至74。根据放射组学预测因子的强度,这种方法可将所需样本量减少多达50%。该方法的效能随着放射组学预测准确性的提高而增强,此外,当治疗效应量较小时,这种方法最有帮助。神经影像学生物标志物是一套强大且日益常见的工具,在许多情况下,它们对疾病结局具有高度预测性。在此,我们探讨在脑癌和前驱期阿尔茨海默病的背景下,使用基于MRI的放射组学生物标志物来提高临床试验统计效能的可能性。这些方法可通过使用广泛的结局预测因子应用于多种神经系统疾病,以使临床试验更高效。