Suppr超能文献

无监督高光谱受激拉曼显微镜图像增强:通过一次性深度学习进行去噪和分割

Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning.

作者信息

Abdolghader Pedram, Ridsdale Andrew, Grammatikopoulos Tassos, Resch Gavin, Légaré François, Stolow Albert, Pegoraro Adrian F, Tamblyn Isaac

出版信息

Opt Express. 2021 Oct 11;29(21):34205-34219. doi: 10.1364/OE.439662.

Abstract

Hyperspectral stimulated Raman scattering (SRS) microscopy is a label-free technique for biomedical and mineralogical imaging which can suffer from low signal-to-noise ratios. Here we demonstrate the use of an unsupervised deep learning neural network for rapid and automatic denoising of SRS images: UHRED (Unsupervised Hyperspectral Resolution Enhancement and Denoising). UHRED is capable of "one-shot" learning; only one hyperspectral image is needed, with no requirements for training on previously labelled datasets or images. Furthermore, by applying a k-means clustering algorithm to the processed data, we demonstrate automatic, unsupervised image segmentation, yielding, without prior knowledge of the sample, intuitive chemical species maps, as shown here for a lithium ore sample.

摘要

高光谱受激拉曼散射(SRS)显微镜是一种用于生物医学和矿物学成像的无标记技术,但可能存在低信噪比的问题。在此,我们展示了一种无监督深度学习神经网络用于SRS图像的快速自动去噪:UHRED(无监督高光谱分辨率增强与去噪)。UHRED能够进行“一次性”学习;只需要一幅高光谱图像,无需在先前标记的数据集或图像上进行训练。此外,通过对处理后的数据应用k均值聚类算法,我们展示了自动、无监督的图像分割,在无需样本先验知识的情况下,生成直观的化学物种图,此处以锂矿石样本为例进行展示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验