Department of Microbiology/Immunology, University of Illinois at Chicago, Chicago, USA.
Department of Medicine, Jesse Brown Va Medical Center, Chicago, USA.
Gut Microbes. 2021 Jan-Dec;13(1):1996848. doi: 10.1080/19490976.2021.1996848.
Amyotrophic Lateral Sclerosis is a neuromuscular disease characterized by the progressive death of motor neurons and muscle atrophy. The gastrointestinal symptoms in ALS patients were largely ignored or underestimated. The relationship between the enteric neuromuscular system and microbiome in ALS progression is unknown. We performed longitudinal studies on the enteric neuron system (ENS) and microbiome in the ALS human-SOD1 (Superoxide Dismutase 1) transgenic mice. We treated age-matched wild-type and ALS mice with butyrate or antibiotics to investigate the microbiome and neuromuscular functions. We examined intestinal mobility, microbiome, an ENS marker GFAP (Glial Fibrillary Acidic Protein), a smooth muscle marker (SMMHC, Smooth Muscle Myosin Heavy Chain), and human colonoids. The distribution of human-G93A-SOD1 protein was tested as an indicator of ALS progression. At 2-month-old before ALS onset, SOD1 mice had significantly lower intestinal mobility, decreased grip strength, and reduced time in the rotarod. We observed increased GFAP and decreased SMMHC expression. These changes correlated with consistent increased aggregation of mutated SOD1 in the colon, small intestine, and spinal cord. Butyrate or antibiotics treated SOD1 mice had a significantly longer latency to fall in the rotarod test, reduced SOD1 aggregation, and enhanced enteric neuromuscular function. Feces from 2-month-old SOD1 mice significantly enhanced SOD1 aggregation in human colonoids transfected with a SOD1-GFP plasmid. Longitudinal studies of microbiome data further showed the altered bacterial community related to autoimmunity , inflammation (e.g., ,), and metabolism (e.g., ) at 1- and 2-month-old SOD1 mice, suggesting the early microbial contribution to the pathological changes. We have demonstrated a novel link between the microbiome, hSOD1 aggregation, and intestinal mobility. Dysbiosis occurred at the early stage of the ALS mice before observed mutated-SOD1 aggregation and dysfunction of ENS. Manipulating the microbiome improves the muscle performance of SOD1 mice. We provide insights into the fundamentals of intestinal neuromuscular function and microbiome in ALS.
肌萎缩侧索硬化症是一种以运动神经元进行性死亡和肌肉萎缩为特征的神经肌肉疾病。 ALS 患者的胃肠道症状在很大程度上被忽视或低估。肠神经系统与 ALS 进展中微生物组之间的关系尚不清楚。我们对 ALS 人-SOD1(超氧化物歧化酶 1)转基因小鼠的肠神经元系统(ENS)和微生物组进行了纵向研究。我们用丁酸盐或抗生素治疗年龄匹配的野生型和 ALS 小鼠,以研究微生物组和神经肌肉功能。我们检查了肠道运动、微生物组、ENS 标志物 GFAP(神经胶质纤维酸性蛋白)、平滑肌标志物 SMMHC(平滑肌肌球蛋白重链)和人结肠类器官。人类-G93A-SOD1 蛋白的分布被用作 ALS 进展的指标。在发病前 2 个月的 2 月龄时,SOD1 小鼠的肠道运动明显降低,握力下降,在旋转棒上的时间减少。我们观察到 GFAP 表达增加和 SMMHC 表达减少。这些变化与结肠、小肠和脊髓中突变 SOD1 的一致聚集增加相关。用丁酸盐或抗生素处理的 SOD1 小鼠在旋转棒测试中的跌倒潜伏期明显延长,SOD1 聚集减少,肠神经肌肉功能增强。来自 2 月龄 SOD1 小鼠的粪便显著增强了转染 SOD1-GFP 质粒的人结肠类器官中的 SOD1 聚集。微生物组数据的纵向研究进一步显示,1 月龄和 2 月龄 SOD1 小鼠相关的细菌群落发生改变,与自身免疫、炎症(例如)和代谢(例如)有关,这表明微生物在早期对病理变化有贡献。我们已经证明了微生物组、hSOD1 聚集和肠道运动之间的新联系。在观察到突变 SOD1 聚集和 ENS 功能障碍之前,在 ALS 小鼠的早期就出现了微生物失调。操纵微生物组可改善 SOD1 小鼠的肌肉性能。我们提供了关于 ALS 中肠道神经肌肉功能和微生物组的基本原理的见解。