Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
Anal Chim Acta. 2022 Jan 2;1189:338907. doi: 10.1016/j.aca.2021.338907. Epub 2021 Aug 4.
The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.
免疫传感器已被证明是一种用于检测各种分析物的多功能工具,例如食品污染物、病原菌、抗生素和与癌症相关的生物标志物。为了制造具有高灵敏度的稳健且可重现的免疫传感器,将免疫球蛋白(IgG)以特定方式共价固定有助于提高性能。与直接但非选择性的固定技术导致的随机 IgG 取向相反,本综述首次介绍了逐步但选择性的缀合策略的进展,以提高生物传感效率。非共价吸附 IgG 是与 Fc 片段特异性相互作用的第一步,但也是决定性的一步,然后进行共价缀合可以将这种均匀且有利于抗原的取向不可逆地固定下来。在本综述中,我们首先根据不同的非共价相互作用将这种逐步策略分为两部分,即同功能支持物上的粘合层介导相互作用和异功能支持物上的无层相互作用(其表面具有几种不同的功能,能够与 IgG 相互作用)。此外,还讨论了配体特性(合成策略、间隔物要求和基质选择)对异功能支持物的影响。最后,讨论了逐步共价缀合在实际应用中的结论和未来展望。本综述为高效免疫传感器的制造提供了更多的见解,并特别关注全长 IgG 在传感平台上的良好取向。