Suppr超能文献

用于概率计算的基于阈值开关忆阻器的随机神经元。

Threshold switching memristor-based stochastic neurons for probabilistic computing.

作者信息

Wang Kuan, Hu Qing, Gao Bin, Lin Qi, Zhuge Fu-Wei, Zhang Da-You, Wang Lun, He Yu-Hui, Scheicher Ralph H, Tong Hao, Miao Xiang-Shui

机构信息

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Mater Horiz. 2021 Feb 1;8(2):619-629. doi: 10.1039/d0mh01759k. Epub 2020 Dec 14.

Abstract

Biological neurons exhibit dynamic excitation behavior in the form of stochastic firing, rather than stiffly giving out spikes upon reaching a fixed threshold voltage, which empowers the brain to perform probabilistic inference in the face of uncertainty. However, owing to the complexity of the stochastic firing process in biological neurons, the challenge of fabricating and applying stochastic neurons with bio-realistic dynamics to probabilistic scenarios remains to be fully addressed. In this work, a novel CuS/GeSe conductive-bridge threshold switching memristor is fabricated and singled out to realize electronic stochastic neurons, which is ascribed to the similarity between the stochastic switching behavior observed in the device and that of biological ion channels. The corresponding electric circuit of a stochastic neuron is then constructed and the probabilistic firing capacity of the neuron is utilized to implement Bayesian inference in a spiking neural network (SNN). The application prospects are demonstrated on the example of a tumor diagnosis task, where common fatal diagnostic errors of a conventional artificial neural network are successfully circumvented. Moreover, in comparison to deterministic neuron-based SNNs, the stochastic neurons enable SNNs to deliver an estimate of the uncertainty in their predictions, and the fidelity of the judgement is drastically improved by 81.2%.

摘要

生物神经元以随机放电的形式表现出动态兴奋行为,而不是在达到固定阈值电压时生硬地发放尖峰,这使大脑能够在面对不确定性时进行概率推理。然而,由于生物神经元中随机放电过程的复杂性,制造具有生物现实动力学的随机神经元并将其应用于概率场景的挑战仍有待充分解决。在这项工作中,制造并挑选出一种新型的硫化铜/硒化锗导电桥阈值开关忆阻器来实现电子随机神经元,这归因于在该器件中观察到的随机开关行为与生物离子通道的随机开关行为之间的相似性。然后构建了随机神经元的相应电路,并利用神经元的概率发放能力在脉冲神经网络(SNN)中实现贝叶斯推理。以肿瘤诊断任务为例展示了其应用前景,其中成功规避了传统人工神经网络常见的致命诊断错误。此外,与基于确定性神经元的SNN相比,随机神经元使SNN能够提供其预测中不确定性的估计,并且判断的保真度大幅提高了81.2%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验