Suppr超能文献

调节肌肉和弹簧的属性可以增加弹性能量存储。

Tuned muscle and spring properties increase elastic energy storage.

机构信息

Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California Irvine, Irvine, CA 92617, USA.

出版信息

J Exp Biol. 2021 Dec 15;224(24). doi: 10.1242/jeb.243180. Epub 2021 Dec 16.

Abstract

Elastic recoil drives some of the fastest and most powerful biological movements. For effective use of elastic recoil, the tuning of muscle and spring force capacity is essential. Although studies of invertebrate organisms that use elastic recoil show evidence of increased force capacity in their energy loading muscle, changes in the fundamental properties of such muscles have yet to be documented in vertebrates. Here, we used three species of frogs (Cuban tree frogs, bullfrogs and cane toads) that differ in jumping power to investigate functional shifts in muscle-spring tuning in systems using latch-mediated spring actuation (LaMSA). We hypothesized that variation in jumping performance would result from increased force capacity in muscles and relatively stiffer elastic structures, resulting in greater energy storage. To test this, we characterized the force-length property of the plantaris longus muscle-tendon unit (MTU), and quantified the maximal amount of energy stored in elastic structures for each species. We found that the plantaris longus MTU of Cuban tree frogs produced higher mass-specific energy and mass-specific forces than the other two species. Moreover, we found that the plantaris longus MTU of Cuban tree frogs had higher pennation angles than the other species, suggesting that muscle architecture was modified to increase force capacity through packing of more muscle fibers. Finally, we found that the elastic structures were relatively stiffer in Cuban tree frogs. These results provide a mechanistic link between the tuned properties of LaMSA components, energy storage capacity and whole-system performance.

摘要

弹性回跳驱动着一些最快和最强大的生物运动。为了有效利用弹性回跳,对肌肉和弹簧力容量的调谐至关重要。尽管研究使用弹性回跳的无脊椎动物生物体表明,其储能肌肉的力容量增加,但脊椎动物肌肉的基本特性变化尚未被记录下来。在这里,我们使用了三种跳跃能力不同的青蛙(古巴树蛙、牛蛙和蔗蟾)来研究使用闩锁介导的弹簧致动(LaMSA)的系统中肌肉-弹簧调谐的功能转变。我们假设跳跃性能的变化是由于肌肉的力容量增加和相对较硬的弹性结构,从而导致更大的能量储存。为了验证这一点,我们对跖肌长肌腱单元(MTU)的力-长度特性进行了表征,并量化了每种物种弹性结构中储存的最大能量。我们发现,古巴树蛙的跖肌长肌腱单元产生的比质量特异性能量和比质量特异性力比其他两种物种更高。此外,我们发现,古巴树蛙的跖肌长肌腱单元的肌节角度比其他物种更高,这表明通过更多的肌肉纤维的包装,肌肉结构发生了改变,从而提高了力容量。最后,我们发现,古巴树蛙的弹性结构相对较硬。这些结果为 LaMSA 组件的调谐特性、储能能力和整个系统性能之间提供了一种机械联系。

相似文献

1
Tuned muscle and spring properties increase elastic energy storage.
J Exp Biol. 2021 Dec 15;224(24). doi: 10.1242/jeb.243180. Epub 2021 Dec 16.
3
Compliant Substrates Disrupt Elastic Energy Storage in Jumping Tree Frogs.
Integr Comp Biol. 2019 Dec 1;59(6):1535-1545. doi: 10.1093/icb/icz069.
4
The weak link: do muscle properties determine locomotor performance in frogs?
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1488-95. doi: 10.1098/rstb.2010.0326.
5
Muscle-spring dynamics in time-limited, elastic movements.
Proc Biol Sci. 2016 Sep 14;283(1838). doi: 10.1098/rspb.2016.1561.
7
Latch-mediated spring actuation (LaMSA): the power of integrated biomechanical systems.
J Exp Biol. 2023 Apr 25;226(Suppl_1). doi: 10.1242/jeb.245262. Epub 2023 Apr 6.
9
Effect of a prehop on the muscle-tendon interaction during vertical jumps.
J Appl Physiol (1985). 2018 May 1;124(5):1203-1211. doi: 10.1152/japplphysiol.00462.2017. Epub 2017 Aug 3.
10
Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading.
J Theor Biol. 2012 Nov 21;313:68-78. doi: 10.1016/j.jtbi.2012.07.033. Epub 2012 Aug 8.

引用本文的文献

1
Effects of a 12-week Baduanjin regimen on biomechanical properties of axial muscle fascia in ankylosing spondylitis.
Medicine (Baltimore). 2024 Dec 27;103(52):e40522. doi: 10.1097/MD.0000000000040522.
2
Frog Fibres: What Muscle Architecture Can Tell Us About Anuran Locomotor Function.
J Morphol. 2025 Jan;286(1):e70016. doi: 10.1002/jmor.70016.
3
Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations.
Sports Med. 2024 Dec;54(12):3019-3050. doi: 10.1007/s40279-024-02110-4. Epub 2024 Oct 7.
4
Beyond power limits: the kinetic energy capacity of skeletal muscle.
J Exp Biol. 2024 Nov 1;227(21). doi: 10.1242/jeb.247150. Epub 2024 Oct 18.
5
Comparative muscle anatomy of the anuran pelvis and hindlimb in relation to locomotor mode.
J Anat. 2024 Nov;245(5):751-774. doi: 10.1111/joa.14122. Epub 2024 Aug 9.
6
Optimal Gearing of Musculoskeletal Systems.
Integr Comp Biol. 2024 Sep 27;64(3):987-1006. doi: 10.1093/icb/icae072.
7
Addressing muscle-tendon imbalances in adult male athletes with personalized exercise prescription based on tendon strain.
Eur J Appl Physiol. 2024 Nov;124(11):3201-3214. doi: 10.1007/s00421-024-05525-z. Epub 2024 Jun 6.
9
Viscoelastic materials are most energy efficient when loaded and unloaded at equal rates.
J R Soc Interface. 2024 Jan;21(210):20230527. doi: 10.1098/rsif.2023.0527. Epub 2024 Jan 31.

本文引用的文献

1
Functional innovation promotes diversification of form in the evolution of an ultrafast trap-jaw mechanism in ants.
PLoS Biol. 2021 Mar 2;19(3):e3001031. doi: 10.1371/journal.pbio.3001031. eCollection 2021 Mar.
2
The problem with skeletal muscle series elasticity.
BMC Biomed Eng. 2019 Dec 3;1:28. doi: 10.1186/s42490-019-0031-y. eCollection 2019.
3
Latch-based control of energy output in spring actuated systems.
J R Soc Interface. 2020 Jul;17(168):20200070. doi: 10.1098/rsif.2020.0070. Epub 2020 Jul 22.
9
The principles of cascading power limits in small, fast biological and engineered systems.
Science. 2018 Apr 27;360(6387). doi: 10.1126/science.aao1082.
10
Scaling of work and power in a locomotor muscle of a frog.
J Comp Physiol B. 2018 Jul;188(4):623-634. doi: 10.1007/s00360-018-1148-3. Epub 2018 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验