Suppr超能文献

利用可解释的机器学习来描述数据漂移,并在 COVID-19 期间检测急诊科入院的新出现的健康风险。

Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19.

机构信息

School of Electronics and Computer Science, University of Southampton, Southampton, UK.

Department of Respiratory Medicine, Minerva House, University Hospital Southampton, Southampton, UK.

出版信息

Sci Rep. 2021 Nov 26;11(1):23017. doi: 10.1038/s41598-021-02481-y.

Abstract

A key task of emergency departments is to promptly identify patients who require hospital admission. Early identification ensures patient safety and aids organisational planning. Supervised machine learning algorithms can use data describing historical episodes to make ahead-of-time predictions of clinical outcomes. Despite this, clinical settings are dynamic environments and the underlying data distributions characterising episodes can change with time (data drift), and so can the relationship between episode characteristics and associated clinical outcomes (concept drift). Practically this means deployed algorithms must be monitored to ensure their safety. We demonstrate how explainable machine learning can be used to monitor data drift, using the COVID-19 pandemic as a severe example. We present a machine learning classifier trained using (pre-COVID-19) data, to identify patients at high risk of admission during an emergency department attendance. We then evaluate our model's performance on attendances occurring pre-pandemic (AUROC of 0.856 with 95%CI [0.852, 0.859]) and during the COVID-19 pandemic (AUROC of 0.826 with 95%CI [0.814, 0.837]). We demonstrate two benefits of explainable machine learning (SHAP) for models deployed in healthcare settings: (1) By tracking the variation in a feature's SHAP value relative to its global importance, a complimentary measure of data drift is found which highlights the need to retrain a predictive model. (2) By observing the relative changes in feature importance emergent health risks can be identified.

摘要

急诊科的一项主要任务是快速识别需要住院的患者。早期识别可确保患者安全,并有助于组织规划。经过监督的机器学习算法可以使用描述历史病例的数据,提前预测临床结果。尽管如此,临床环境是动态的,描述病例的数据分布可能随时间发生变化(数据漂移),病例特征与相关临床结果之间的关系也可能发生变化(概念漂移)。实际上,这意味着必须监控部署的算法以确保其安全性。我们展示了如何使用可解释的机器学习来监控数据漂移,以 COVID-19 大流行作为严重示例。我们使用(COVID-19 之前)的数据训练了一个机器学习分类器,以识别在急诊科就诊时住院风险较高的患者。然后,我们评估了模型在大流行前就诊时的性能(AUROC 为 0.856,95%CI [0.852, 0.859])和 COVID-19 大流行期间的性能(AUROC 为 0.826,95%CI [0.814, 0.837])。我们展示了可解释的机器学习(SHAP)在医疗保健环境中部署的模型的两个优势:(1)通过跟踪特征的 SHAP 值相对于其全局重要性的变化,可以找到数据漂移的补充衡量标准,这突出了需要重新训练预测模型的必要性。(2)通过观察特征重要性的相对变化,可以识别新出现的健康风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/116a/8626460/14c186c36153/41598_2021_2481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验