Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
Medical AI Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea.
Comput Methods Programs Biomed. 2022 Jan;213:106542. doi: 10.1016/j.cmpb.2021.106542. Epub 2021 Nov 17.
Epilepsy is one of the most common neurologic diseases worldwide, and 30% of the patients live with uncontrolled seizures. For the safety of patients with epilepsy, an automatic seizure detection algorithm for continuous seizure monitoring in daily life is important to reduce risks related to seizures, including sudden unexpected death. Previous researchers applied machine learning to detect seizures with EEG, but the epileptic EEG waveform contains subtle changes that are difficult to identify. Furthermore, the imbalance problem due to the small proportion of ictal events caused poor prediction performance in supervised learning approaches. This study aimed to present a personalized deep learning-based anomaly detection algorithm for seizure monitoring with behind-the-ear electroencephalogram (EEG) signals.
We collected behind-the-ear EEG signals from 16 patients with epilepsy in the hospital and used them to develop and evaluate seizure detection algorithms. We modified the variational autoencoder network to learn the latent representation of normal EEG signals and performed seizure detection by measuring the anomalies in EEG signals using the trained network. To personalize the algorithm, we also proposed a method to calibrate the anomaly score for each patient by comparing the representations in the latent space.
Our proposed algorithm showed a sensitivity of 90.4% with a false alarm rate of 0.83 per hour without personal calibration. On the other hand, the one-class support vector machine only showed a sensitivity of 84.6% with a false alarm rate of 2.17 per hour. Furthermore, our proposed model with personal calibration achieved 94.2% sensitivity with a false alarm rate of 0.29 while detecting 49 of 52 ictal events.
We proposed a novel seizure detection algorithm with behind-the-ear EEG signals via semi-supervised learning of an anomaly detecting variational autoencoder and personalization method of anomaly scoring by comparing latent representations. Our approach achieved improved seizure detection with high sensitivity and a lower false alarm rate.
癫痫是全球最常见的神经系统疾病之一,其中 30%的患者存在癫痫发作控制不良的情况。为了保障癫痫患者的安全,开发一种用于日常生活中连续癫痫监测的自动癫痫发作检测算法,对于降低与癫痫发作相关的风险(包括突发意外死亡)非常重要。先前的研究人员已经将机器学习应用于 EEG 中的癫痫发作检测,但癫痫 EEG 波形包含难以识别的细微变化。此外,由于痫性事件比例较小导致的不平衡问题,监督学习方法的预测性能较差。本研究旨在提出一种基于深度学习的个性化异常检测算法,用于监测耳后的脑电图 (EEG) 信号中的癫痫发作。
我们从 16 名住院癫痫患者中采集了耳后 EEG 信号,并使用这些信号来开发和评估癫痫检测算法。我们修改了变分自编码器网络,以学习正常 EEG 信号的潜在表示,并通过使用训练好的网络测量 EEG 信号中的异常来进行癫痫发作检测。为了实现算法的个性化,我们还提出了一种通过比较潜在空间中的表示来校准每个患者的异常得分的方法。
我们提出的算法在未经个人校准的情况下,其灵敏度为 90.4%,假警率为 0.83 次/小时。相比之下,单类支持向量机的灵敏度仅为 84.6%,假警率为 2.17 次/小时。此外,我们提出的带有个人校准的模型在检测到 52 次痫性事件中的 49 次时,达到了 94.2%的灵敏度和 0.29 的假警率。
我们通过半监督学习异常检测变分自动编码器和通过比较潜在表示来个性化异常评分的方法,提出了一种新的耳后 EEG 信号癫痫检测算法。我们的方法实现了更高的灵敏度和更低的假警率,提高了癫痫发作检测的性能。