Suppr超能文献

Intelligent Event-Based Fuzzy Dynamic Positioning Control of Nonlinear Unmanned Marine Vehicles Under DoS Attack.

作者信息

Zhang Dan, Ye Zehua, Feng Gang, Li Hongyi

出版信息

IEEE Trans Cybern. 2022 Dec;52(12):13486-13499. doi: 10.1109/TCYB.2021.3128170. Epub 2022 Nov 18.

Abstract

This article addresses the dynamic positioning control problem of a nonlinear unmanned marine vehicle (UMV) system subject to network communication constraints and deny-of-service (DoS) attack, where the dynamics of UMV are described by a Takagi-Sugeno (T-S) fuzzy system (TSFS). In order to save limited communication resource, a new intelligent event-triggering mechanism is proposed, in which the event triggering threshold is optimized by a Q -learning algorithm. Then, a switched system approach is proposed to deal with the aperiodic DoS attack occurring in the communication channels. With a proper piecewise Lyapunov function, some sufficient conditions for global exponential stability (GES) of the closed-loop nonlinear UMV system are derived, and the corresponding observer and controller gains are designed via solving a set of matrix inequalities. A benchmark nonlinear UMV system is adopted as an example in simulation, and the simulation results validate the effectiveness of the proposed control method.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验