Kim Nam Heon, Yang Dong Won, Choi Seong Hye, Kang Seung Wan
iMediSync Inc., Seoul, South Korea.
Department of Neurology, St. Mary's Hospital, Seoul, South Korea.
Front Comput Neurosci. 2021 Nov 11;15:755499. doi: 10.3389/fncom.2021.755499. eCollection 2021.
The use of positron emission tomography (PET) as the initial or sole biomarker of β-amyloid (Aβ) brain pathology may inhibit Alzheimer's disease (AD) drug development and clinical use due to cost, access, and tolerability. We developed a qEEG-ML algorithm to predict Aβ pathology among subjective cognitive decline (SCD) and mild cognitive impairment (MCI) patients, and validated it using Aβ PET. We compared QEEG data between patients with MCI and those with SCD with and without PET-confirmed beta-amyloid plaque. We compared resting-state eyes-closed electroencephalograms (EEG) patterns between the amyloid positive and negative groups using relative power measures from 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2), divided into eight frequency bands, delta (1-4 Hz), theta (4-8 Hz), alpha 1 (8-10 Hz), alpha 2 (10-12 Hz), beta 1 (12-15 Hz), beta 2 (15-20 Hz), beta 3 (20-30 Hz), and gamma (30-45 Hz) calculated by FFT and denoised by iSyncBrain. The resulting 152 features were analyzed using a genetic algorithm strategy to identify optimal feature combinations and maximize classification accuracy. Guided by gene modeling methods, we treated each channel and frequency band of EEG power as a gene and modeled it with every possible combination within a given dimension. We then collected the models that showed the best performance and identified the genes that appeared most frequently in the superior models. By repeating this process, we converged on a model that approximates the optimum. We found that the average performance increased as this iterative development of the genetic algorithm progressed. We ultimately achieved 85.7% sensitivity, 89.3% specificity, and 88.6% accuracy in SCD amyloid positive/negative classification, and 83.3% sensitivity, 85.7% specificity, and 84.6% accuracy in MCI amyloid positive/negative classification.
由于成本、可及性和耐受性等因素,将正电子发射断层扫描(PET)用作β-淀粉样蛋白(Aβ)脑病理的初始或唯一生物标志物可能会抑制阿尔茨海默病(AD)药物的研发和临床应用。我们开发了一种定量脑电图-机器学习(qEEG-ML)算法,用于预测主观认知下降(SCD)和轻度认知障碍(MCI)患者的Aβ病理,并使用Aβ PET对其进行了验证。我们比较了PET确诊有或无β-淀粉样蛋白斑块的MCI患者和SCD患者之间的定量脑电图(QEEG)数据。我们使用来自19个通道(Fp1、Fp2、F7、F3、Fz、F4、F8、T3、C3、Cz、C4、T4、T5、P3、Pz、P4、T6、O1、O2)的相对功率测量值,比较了淀粉样蛋白阳性和阴性组之间的静息闭眼脑电图(EEG)模式,这些通道被划分为八个频段,即通过快速傅里叶变换(FFT)计算并经iSyncBrain去噪后的δ(1-4赫兹)、θ(4-8赫兹)、α1(8-10赫兹)、α2(10-12赫兹)、β1(12-15赫兹)、β2(15-20赫兹)、β3(20-30赫兹)和γ(30-45赫兹)频段。使用遗传算法策略对得到的152个特征进行分析,以识别最佳特征组合并最大化分类准确率。在基因建模方法的指导下,我们将脑电图功率的每个通道和频段视为一个基因,并在给定维度内对其与每种可能的组合进行建模。然后,我们收集表现最佳的模型,并识别在优秀模型中出现频率最高的基因。通过重复这个过程,我们得到了一个接近最优的模型。我们发现,随着遗传算法的这种迭代发展,平均性能有所提高。我们最终在SCD淀粉样蛋白阳性/阴性分类中实现了85.7%的灵敏度、89.3%的特异性和88.6%的准确率,在MCI淀粉样蛋白阳性/阴性分类中实现了83.3%的灵敏度、85.7%的特异性和84.6%的准确率。