Suppr超能文献

纳米孔测序数据的种系结构变异检测方法评估

Evaluation of Germline Structural Variant Calling Methods for Nanopore Sequencing Data.

作者信息

Bolognini Davide, Magi Alberto

机构信息

Unit of Medical Genetics, Meyer Children's Hospital, Florence, Italy.

Department of Information Engineering, University of Florence, Florence, Italy.

出版信息

Front Genet. 2021 Nov 18;12:761791. doi: 10.3389/fgene.2021.761791. eCollection 2021.

Abstract

Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides and are known to have a serious impact on human health. While prior short-read sequencing technologies have often proved inadequate for a comprehensive assessment of structural variation, more recent long reads from Oxford Nanopore Technologies have already been proven invaluable for the discovery of large SVs and hold the potential to facilitate the resolution of the full SV spectrum. With many long-read sequencing studies to follow, it is crucial to assess factors affecting current SV calling pipelines for nanopore sequencing data. In this brief research report, we evaluate and compare the performances of five long-read SV callers across four long-read aligners using both real and synthetic nanopore datasets. In particular, we focus on the effects of read alignment, sequencing coverage, and variant allele depth on the detection and genotyping of SVs of different types and size ranges and provide insights into precision and recall of SV callsets generated by integrating the various long-read aligners and SV callers. The computational pipeline we propose is publicly available at https://github.com/davidebolo1993/EViNCe and can be adjusted to further evaluate future nanopore sequencing datasets.

摘要

结构变异(SVs)是指涉及至少50个核苷酸的基因组重排,已知其对人类健康有严重影响。虽然先前的短读长测序技术往往不足以全面评估结构变异,但最近来自牛津纳米孔技术公司的长读长已经被证明在发现大型SV方面具有重要价值,并且有潜力促进完整SV谱的解析。随着许多长读长测序研究的开展,评估影响当前纳米孔测序数据SV检测流程的因素至关重要。在这份简短的研究报告中,我们使用真实和合成的纳米孔数据集,评估并比较了五种长读长SV检测工具在四种长读长比对工具上的性能。特别是,我们关注读段比对、测序覆盖度和变异等位基因深度对不同类型和大小范围SV的检测和基因分型的影响,并深入了解通过整合各种长读长比对工具和SV检测工具生成的SV调用集的精度和召回率。我们提出的计算流程可在https://github.com/davidebolo1993/EViNCe上公开获取,并且可以进行调整以进一步评估未来的纳米孔测序数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d71/8637281/31963105a325/fgene-12-761791-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验