Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.
PLoS Biol. 2021 Dec 6;19(12):e3001475. doi: 10.1371/journal.pbio.3001475. eCollection 2021 Dec.
Plants use energy from sunlight to transform carbon dioxide from the air into complex organic molecules, ultimately producing much of the food we eat. To make this complex chemistry more efficient, plant leaves are intricately constructed in 3 dimensions: They are flat to maximise light capture and contain extensive internal air spaces to increase gas exchange for photosynthesis. Many years of work has built up an understanding of how leaves form flat blades, but the molecular mechanisms that control air space formation are poorly understood. Here, I review our current understanding of air space formation and outline how recent advances can be harnessed to answer key questions and take the field forward. Increasing our understanding of plant air spaces will not only allow us to understand a fundamental aspect of plant development, but also unlock the potential to engineer the internal structure of crops to make them more efficient at photosynthesis with lower water requirements and more resilient in the face of a changing environment.
植物利用阳光中的能量将空气中的二氧化碳转化为复杂的有机分子,最终生产出我们所吃的大部分食物。为了使这种复杂的化学过程更有效率,植物叶片在三维空间中被精巧地构建:叶片是扁平的,以最大限度地捕获光线,并包含广泛的内部空气空间,以增加光合作用的气体交换。多年的工作已经积累了对叶片如何形成扁平叶片的理解,但控制气腔形成的分子机制还知之甚少。在这里,我回顾了我们目前对气腔形成的理解,并概述了如何利用最近的进展来回答关键问题并推动该领域的发展。增加我们对植物气腔的理解不仅可以使我们了解植物发育的一个基本方面,还可以挖掘出对作物内部结构进行工程改造的潜力,使它们在面对不断变化的环境时,能够以更低的水分需求和更高的弹性,更有效地进行光合作用。