Suppr超能文献

多组学视角下的帕金森病:从遗传关联到功能机制。

Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms.

机构信息

Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; UK Dementia Research Institute at Imperial College London, London, United Kingdom.

Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Sección Departamental de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.

出版信息

Neurobiol Dis. 2022 Feb;163:105580. doi: 10.1016/j.nbd.2021.105580. Epub 2021 Dec 4.

Abstract

Genome-Wide Association Studies (GWAS) have elucidated the genetic components of Parkinson's Disease (PD). However, because the vast majority of GWAS association signals fall within non-coding regions, translating these results into an interpretable, mechanistic understanding of the disease etiology remains a major challenge in the field. In this review, we provide an overview of the approaches to prioritize putative causal variants and genes as well as summarise the primary findings of previous studies. We then discuss recent efforts to integrate multi-omics data to identify likely pathogenic cell types and biological pathways implicated in PD pathogenesis. We have compiled full summary statistics of cell-type, tissue, and phentoype enrichment analyses from multiple studies of PD GWAS and provided them in a standardized format as a resource for the research community (https://github.com/RajLabMSSM/PD_omics_review). Finally, we discuss the experimental, computational, and conceptual advances that will be necessary to fully elucidate the effects of functional variants and genes on cellular dysregulation and disease risk.

摘要

全基因组关联研究(GWAS)已经阐明了帕金森病(PD)的遗传成分。然而,由于绝大多数 GWAS 关联信号都落在非编码区域内,因此将这些结果转化为对疾病病因的可解释的、机制性的理解仍然是该领域的一个主要挑战。在这篇综述中,我们概述了优先考虑假定的因果变异和基因的方法,并总结了先前研究的主要发现。然后,我们讨论了最近整合多组学数据以识别可能与 PD 发病机制相关的致病细胞类型和生物学途径的努力。我们已经从多个 PD GWAS 研究中编译了细胞类型、组织和表型富集分析的完整汇总统计数据,并以标准化格式提供,作为研究社区的资源(https://github.com/RajLabMSSM/PD_omics_review)。最后,我们讨论了充分阐明功能变异和基因对细胞失调和疾病风险的影响所需的实验、计算和概念上的进展。

相似文献

1
Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms.
Neurobiol Dis. 2022 Feb;163:105580. doi: 10.1016/j.nbd.2021.105580. Epub 2021 Dec 4.
2
Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants.
Hum Mol Genet. 2022 Mar 21;31(6):888-900. doi: 10.1093/hmg/ddab294.
4
Macular structural integrity estimates are associated with Parkinson's disease genetic risk.
Acta Neuropathol Commun. 2024 Aug 13;12(1):130. doi: 10.1186/s40478-024-01841-9.
7
The Parkinson's Disease Genome-Wide Association Study Locus Browser.
Mov Disord. 2020 Nov;35(11):2056-2067. doi: 10.1002/mds.28197. Epub 2020 Aug 31.

引用本文的文献

3
Synaptic vesicle-omics in mice captures signatures of aging and synucleinopathy.
Nat Commun. 2025 May 1;16(1):4079. doi: 10.1038/s41467-025-59441-7.
4
Integrative Metabolome and Proteome Analysis of Cerebrospinal Fluid in Parkinson's Disease.
Int J Mol Sci. 2024 Oct 23;25(21):11406. doi: 10.3390/ijms252111406.
5
Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system.
Philos Trans R Soc Lond B Biol Sci. 2024 Apr 8;379(1899):20220517. doi: 10.1098/rstb.2022.0517. Epub 2024 Feb 19.
6
Computational analysis of five neurodegenerative diseases reveals shared and specific genetic loci.
Comput Struct Biotechnol J. 2023 Oct 21;21:5395-5407. doi: 10.1016/j.csbj.2023.10.031. eCollection 2023.
7
Expanding causal genes for Parkinson's disease via multi-omics analysis.
NPJ Parkinsons Dis. 2023 Oct 21;9(1):146. doi: 10.1038/s41531-023-00591-0.
8
Insights into Neurodegeneration in Parkinson's Disease from Single-Cell and Spatial Genomics.
Mov Disord. 2023 Apr;38(4):518-525. doi: 10.1002/mds.29374. Epub 2023 Mar 7.

本文引用的文献

1
The Foundational Data Initiative for Parkinson Disease: Enabling efficient translation from genetic maps to mechanism.
Cell Genom. 2023 Feb 6;3(3):100261. doi: 10.1016/j.xgen.2023.100261. eCollection 2023 Mar 8.
2
Association of a common genetic variant with Parkinson's disease is mediated by microglia.
Sci Transl Med. 2022 Jul 27;14(655):eabp8869. doi: 10.1126/scitranslmed.abp8869.
3
Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies.
Nat Genet. 2022 Jan;54(1):4-17. doi: 10.1038/s41588-021-00976-y. Epub 2022 Jan 6.
4
Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants.
Hum Mol Genet. 2022 Mar 21;31(6):888-900. doi: 10.1093/hmg/ddab294.
5
Effective gene expression prediction from sequence by integrating long-range interactions.
Nat Methods. 2021 Oct;18(10):1196-1203. doi: 10.1038/s41592-021-01252-x. Epub 2021 Oct 4.
6
MungeSumstats: a Bioconductor package for the standardization and quality control of many GWAS summary statistics.
Bioinformatics. 2021 Dec 7;37(23):4593-4596. doi: 10.1093/bioinformatics/btab665.
7
echolocatoR: an automated end-to-end statistical and functional genomic fine-mapping pipeline.
Bioinformatics. 2022 Jan 3;38(2):536-539. doi: 10.1093/bioinformatics/btab658.
8
A compendium of uniformly processed human gene expression and splicing quantitative trait loci.
Nat Genet. 2021 Sep;53(9):1290-1299. doi: 10.1038/s41588-021-00924-w. Epub 2021 Sep 6.
9
A map of transcriptional heterogeneity and regulatory variation in human microglia.
Nat Genet. 2021 Jun;53(6):861-868. doi: 10.1038/s41588-021-00875-2. Epub 2021 Jun 3.
10
Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis.
Nat Neurosci. 2021 Jul;24(7):1020-1034. doi: 10.1038/s41593-021-00862-0. Epub 2021 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验