Lagergren Pernilla, Johar Asif, Ness-Jensen Eivind, Schandl Anna
Surgical Care Science, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Surgery & Cancer, Imperial College London, United Kingdom.
Surgical Care Science, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
Eur J Surg Oncol. 2022 May;48(5):1011-1016. doi: 10.1016/j.ejso.2021.11.134. Epub 2021 Dec 1.
A common and burdensome consequence of oesophagectomy for cancer is reflux. This study aimed to develop a risk prediction model for postoperative reflux using variables available at the time of surgery enabling tailored preventive symptom management.
Data were obtained from a nationwide, population-based cohort of 921 adults who underwent oesophagectomy for cancer between 2013 and 2019. Among 569 eligible patients, 383 (67%) participated in the study. Patient and clinical characteristics were retrieved from national health registries and medical records. Postoperative reflux was self-reported 1 year after surgery in the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire module for gastroesophageal symptoms. Multivariable regression models provided odds ratios (OR) with 95% confidence intervals (CI). The performance of the model was evaluated using the area under the receiver-operating characteristic curve.
Female sex (OR 2.24, 95% CI: 1.00-5.00), preoperative reflux (OR 2.99, 95% CI: 1.61-5.52), and preoperative body mass index ≥30 (OR 2.45, 95% CI: 1.32-4.54) increased the risk of postoperative reflux. A model based on age, sex, preoperative reflux, body mass index, chronic obstructive pulmonary disease, and ventricle substitute predicted 72% of the severe cases.
Female sex, preoperative reflux, and preoperative body mass index increased the risk of postoperative reflux. A combination of readily available patient and preoperative clinical variables showed fairly good accuracy in predicting postoperative reflux after oesophagectomy. The clinical risk prediction model may be helpful for early symptom management but needs to be externally validated before wider use.
食管癌切除术后常见且令人困扰的后果是反流。本研究旨在利用手术时可获取的变量开发一种术后反流风险预测模型,以实现针对性的预防性症状管理。
数据来自于2013年至2019年间全国范围内基于人群的921例接受食管癌切除术的成年队列。在569例符合条件的患者中,383例(67%)参与了研究。患者和临床特征从国家健康登记处和医疗记录中获取。术后反流情况通过欧洲癌症研究与治疗组织生活质量问卷中胃食管症状模块在术后1年时进行自我报告。多变量回归模型提供比值比(OR)及95%置信区间(CI)。使用受试者工作特征曲线下面积评估模型性能。
女性(OR 2.24,95% CI:1.00 - 5.00)、术前反流(OR 2.99,95% CI:1.61 - 5.52)以及术前体重指数≥30(OR 2.45,95% CI:1.32 - 4.54)会增加术后反流风险。基于年龄、性别、术前反流、体重指数、慢性阻塞性肺疾病和心室替代物的模型可预测72%的严重病例。
女性、术前反流和术前体重指数会增加术后反流风险。结合易于获取的患者和术前临床变量在预测食管癌切除术后的反流方面显示出相当高的准确性。该临床风险预测模型可能有助于早期症状管理,但在广泛应用前需要进行外部验证。