Reddy A Srinivas, Reddy P Krishna, Mondal Anirban, Priyakumar U Deva
Kohli Centre on Intelligent Systems, IIIT, Hyderabad, India.
Department of Computer Science, Ashoka University, Delhi, India.
Int J Data Sci Anal. 2022;13(2):105-121. doi: 10.1007/s41060-021-00292-y. Epub 2021 Dec 2.
Pattern mining from graph transactional data (GTD) is an active area of research with applications in the domains of bioinformatics, chemical informatics and social networks. Existing works address the problem of mining frequent subgraphs from GTD. However, the knowledge concerning the coverage aspect of a set of subgraphs is also valuable for improving the performance of several applications. In this regard, we introduce the notion of subgraph coverage patterns (). Given a GTD, a subgraph coverage pattern is a set of subgraphs subject to relative frequency, coverage and overlap constraints provided by the user. We propose the ubgraph D-based lat ransactional () framework for the efficient extraction of from a given GTD. Our performance evaluation using three real datasets demonstrates that our proposed framework is indeed capable of efficiently extracting from GTD. Furthermore, we demonstrate the effectiveness of through a case study in computer-aided drug design.
从图事务数据(GTD)中进行模式挖掘是一个活跃的研究领域,在生物信息学、化学信息学和社交网络等领域有应用。现有工作解决了从GTD中挖掘频繁子图的问题。然而,关于一组子图的覆盖方面的知识对于提高多个应用的性能也很有价值。在这方面,我们引入了子图覆盖模式()的概念。给定一个GTD,子图覆盖模式是一组受用户提供的相对频率、覆盖和重叠约束的子图。我们提出了基于子图D的最新事务()框架,用于从给定的GTD中高效提取。我们使用三个真实数据集进行的性能评估表明,我们提出的框架确实能够从GTD中高效提取。此外,我们通过计算机辅助药物设计的案例研究证明了的有效性。