Suppr超能文献

从图事务中挖掘子图覆盖模式。

Mining subgraph coverage patterns from graph transactions.

作者信息

Reddy A Srinivas, Reddy P Krishna, Mondal Anirban, Priyakumar U Deva

机构信息

Kohli Centre on Intelligent Systems, IIIT, Hyderabad, India.

Department of Computer Science, Ashoka University, Delhi, India.

出版信息

Int J Data Sci Anal. 2022;13(2):105-121. doi: 10.1007/s41060-021-00292-y. Epub 2021 Dec 2.

Abstract

Pattern mining from graph transactional data (GTD) is an active area of research with applications in the domains of bioinformatics, chemical informatics and social networks. Existing works address the problem of mining frequent subgraphs from GTD. However, the knowledge concerning the coverage aspect of a set of subgraphs is also valuable for improving the performance of several applications. In this regard, we introduce the notion of subgraph coverage patterns (). Given a GTD, a subgraph coverage pattern is a set of subgraphs subject to relative frequency, coverage and overlap constraints provided by the user. We propose the ubgraph D-based lat ransactional () framework for the efficient extraction of from a given GTD. Our performance evaluation using three real datasets demonstrates that our proposed framework is indeed capable of efficiently extracting from GTD. Furthermore, we demonstrate the effectiveness of through a case study in computer-aided drug design.

摘要

从图事务数据(GTD)中进行模式挖掘是一个活跃的研究领域,在生物信息学、化学信息学和社交网络等领域有应用。现有工作解决了从GTD中挖掘频繁子图的问题。然而,关于一组子图的覆盖方面的知识对于提高多个应用的性能也很有价值。在这方面,我们引入了子图覆盖模式()的概念。给定一个GTD,子图覆盖模式是一组受用户提供的相对频率、覆盖和重叠约束的子图。我们提出了基于子图D的最新事务()框架,用于从给定的GTD中高效提取。我们使用三个真实数据集进行的性能评估表明,我们提出的框架确实能够从GTD中高效提取。此外,我们通过计算机辅助药物设计的案例研究证明了的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验