Suppr超能文献

物联网中迁移学习在急性淋巴细胞白血病分类的混合人工智能系统中的应用。

IoT Application of Transfer Learning in Hybrid Artificial Intelligence Systems for Acute Lymphoblastic Leukemia Classification.

机构信息

Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland.

Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland.

出版信息

Sensors (Basel). 2021 Dec 1;21(23):8025. doi: 10.3390/s21238025.

Abstract

Acute lymphoblastic leukemia is the most common cancer in children, and its diagnosis mainly includes microscopic blood tests of the bone marrow. Therefore, there is a need for a correct classification of white blood cells. The approach developed in this article is based on an optimized and small IoT-friendly neural network architecture. The application of learning transfer in hybrid artificial intelligence systems is offered. The hybrid system consisted of a MobileNet v2 encoder pre-trained on the ImageNet dataset and machine learning algorithms performing the role of the head. These were the XGBoost, Random Forest, and Decision Tree algorithms. In this work, the average accuracy was over 90%, reaching 97.4%. This work proves that using hybrid artificial intelligence systems for tasks with a low computational complexity of the processing units demonstrates a high classification accuracy. The methods used in this study, confirmed by the promising results, can be an effective tool in diagnosing other blood diseases, facilitating the work of a network of medical institutions to carry out the correct treatment schedule.

摘要

急性淋巴细胞白血病是儿童中最常见的癌症,其诊断主要包括骨髓的微观血液检查。因此,需要对白细胞进行正确的分类。本文提出的方法基于经过优化和小型物联网友好的神经网络架构。提供了在混合人工智能系统中应用学习迁移的方法。混合系统由在 ImageNet 数据集上预训练的 MobileNet v2 编码器和执行头部角色的机器学习算法组成。这些算法是 XGBoost、随机森林和决策树算法。在这项工作中,平均准确率超过 90%,达到 97.4%。这项工作证明,对于处理单元计算复杂度低的任务使用混合人工智能系统可以实现高精度的分类。通过有希望的结果证实的本研究中使用的方法,可以成为诊断其他血液疾病的有效工具,方便医疗机构网络开展正确的治疗计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验