Electrical Engineering, Stanford University, Stanford, CA 94305, USA,
Pac Symp Biocomput. 2022;27:242-253.
Eye tracking, or oculography, provides insight into where a person is looking. Recent advances in camera technology and machine learning have enabled prevalent devices like smart-phones to track gaze and visuo-motor behavior at near clinical-quality resolution. A critical gap in using oculography to diagnose visuo-motor dysfunction on a large scale is in the design of visual task paradigms, algorithms for diagnosis, and sufficiently large datasets. In this study, we used a 500 Hz infrared oculography dataset in healthy controls and patients with various neurological diseases causing visuo-motor abnormality due to eye movement disorder or vision loss. We used novel visuo-motor tasks involving rapid reading of 40 single-digit numbers per page and developed a machine learning algorithm for predicting disease state. We show that oculography data acquired while a person reads one page of 40 single-digit numbers (15-30 seconds duration) is predictive of of visuo-motor dysfunction (ROC-AUC = 0:973). Remarkably, we also find that short recordings of about 2.5 seconds (6-12× reduction in time) are sufficient for disease detection (ROC-AUC = 0:831). We identify which tasks are most informative for identifying visuo-motor dysfunction (those with the most visual crowding), and more specifically, which aspects of the task are most predictive (the recording segments where gaze moves vertically across lines). In addition to segregating disease and controls, our novel visuo-motor paradigms can discriminate among diseases impacting eye movement, diseases associated with vision loss, and healthy controls (81% accuracy compared with baseline of 33%).
眼动追踪,或眼动描记术,可以提供有关人注视位置的信息。近年来,相机技术和机器学习的进步使得智能手机等普及设备能够以接近临床质量的分辨率跟踪注视和视动行为。在大规模使用眼动追踪来诊断视动功能障碍方面,存在一个关键的差距,即视觉任务范式的设计、诊断算法以及足够大的数据集。在这项研究中,我们使用了一个 500 Hz 红外眼动数据集,其中包括健康对照者和各种因眼球运动障碍或视力丧失而导致视动异常的神经疾病患者。我们使用了涉及快速阅读每页 40 个一位数字的新的视动任务,并开发了一种用于预测疾病状态的机器学习算法。我们表明,当一个人阅读一页 40 个一位数字(持续 15-30 秒)时获取的眼动追踪数据可预测视动功能障碍(ROC-AUC=0.973)。值得注意的是,我们还发现,大约 2.5 秒(时间减少 6-12 倍)的短记录就足以进行疾病检测(ROC-AUC=0.831)。我们确定了哪些任务对于识别视动功能障碍最有信息价值(那些具有最多视觉拥挤的任务),更具体地说,哪些任务部分最具预测性(注视垂直穿过行的记录片段)。除了将疾病和对照者区分开来,我们的新视动范式还可以区分影响眼球运动的疾病、与视力丧失相关的疾病以及健康对照者(与基线的 33%相比,准确率为 81%)。