Suppr超能文献

Actor-Critic Reinforcement Learning Based Algorithm for Contaminant Type Identification in Surface Electromyography Data.

作者信息

Tosin Mauricio C, Bagesteiro Leia B, Balbinot Alexandre

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:186-189. doi: 10.1109/EMBC46164.2021.9629967.

Abstract

This paper aims to present an innovative approach based on Reinforcement Learning (RL) concept to detect contaminants' type and minimize their effect on surface electromyography signal (sEMG). An agent-environment model was created based on the following elements: environment (muscle electrical activity), state (set of six features extracted from the signal), actions (application of filters/procedures to reduce the impact of each interference), and agent (controller, which will identify the type of contamination and take the appropriate action). The learning was conducted with Actor-Critic method. An average accuracy of 92.96% was achieved in an off-line experiment when detecting four contaminant types (electrocardiography (ECG) interference, movement artifact, power line interference, and additive white Gaussian noise).

摘要

相似文献

1
Actor-Critic Reinforcement Learning Based Algorithm for Contaminant Type Identification in Surface Electromyography Data.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:186-189. doi: 10.1109/EMBC46164.2021.9629967.
2
Actor-Critic Reinforcement Learning Based Algorithm for Contaminant Minimization in sEMG Movement Recognition.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3636-3639. doi: 10.1109/EMBC48229.2022.9871412.
3
Meta attention for Off-Policy Actor-Critic.
Neural Netw. 2023 Jun;163:86-96. doi: 10.1016/j.neunet.2023.03.024. Epub 2023 Mar 28.
4
Recurrent Neural Network for Contaminant Type Detector in Surface Electromyography Signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3759-3762. doi: 10.1109/EMBC44109.2020.9175348.
5
Identification of contaminant type in surface electromyography (EMG) signals.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):774-83. doi: 10.1109/TNSRE.2014.2299573. Epub 2014 Jan 21.
6
Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1892-1905. doi: 10.1109/TNSRE.2017.2700395. Epub 2017 May 2.
7
Equivariant Graph-Representation-Based Actor-Critic Reinforcement Learning for Nanoparticle Design.
J Chem Inf Model. 2023 Jun 26;63(12):3731-3741. doi: 10.1021/acs.jcim.3c00394. Epub 2023 Jun 5.
8
Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach.
Neural Netw. 2023 Jan;157:288-304. doi: 10.1016/j.neunet.2022.10.022. Epub 2022 Oct 29.
10
Target Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning.
IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3741-3752. doi: 10.1109/TNNLS.2021.3054402. Epub 2022 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验