Suppr超能文献

通过结合可解释机器学习算法加强先天性心脏病重症筛查

Enhanced Critical Congenital Cardiac Disease Screening by Combining Interpretable Machine Learning Algorithms.

作者信息

Lai Zhengfeng, Vadlaputi Pranjali, Tancredi Daniel J, Garg Meena, Koppel Robert I, Goodman Mera, Hogan Whitnee, Cresalia Nicole, Juergensen Stephan, Manalo Erlinda, Lakshminrusimha Satyan, Chuah Chen-Nee, Siefkes Heather

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1403-1406. doi: 10.1109/EMBC46164.2021.9630111.

Abstract

Critical Congenital Heart Disease (CCHD) screening that only uses oxygen saturation (SpO2), measured by pulse oximetry, fails to detect an estimated 900 US newborns annually. The addition of other pulse oximetry features such as perfusion index (PIx), heart rate, pulse delay and photoplethysmography characteristics may improve detection of CCHD, especially those with systemic blood flow obstruction such as Coarctation of the Aorta (CoA). To comprehensively study the most relevant features associated with CCHD, we investigated interpretable machine learning (ML) algorithms by using Recursive Feature Elimination (RFE) to identify an optimal subset of features. We then incorporated the trained ML models into the current SpO2-alone screening algorithm. Our proposed enhanced CCHD screening system, which adds the ML model, improved sensitivity by approximately 10 percentage points compared to the current standard SpO2-alone method with minimal to no impact on specificity.Clinical relevance- This establishes proof of concept for a ML algorithm that combines pulse oximetry features to improve detection of CCHD with little impact on false positive rate.

摘要

仅使用脉搏血氧仪测量的血氧饱和度(SpO2)进行的危重型先天性心脏病(CCHD)筛查,每年无法检测出约900名美国新生儿。添加其他脉搏血氧仪特征,如灌注指数(PIx)、心率、脉搏延迟和光电容积脉搏波描记术特征,可能会改善CCHD的检测,尤其是那些存在体循环血流梗阻的疾病,如主动脉缩窄(CoA)。为了全面研究与CCHD相关的最相关特征,我们通过使用递归特征消除(RFE)来识别最佳特征子集,从而研究可解释的机器学习(ML)算法。然后,我们将经过训练的ML模型纳入当前仅使用SpO2的筛查算法中。我们提出的增强型CCHD筛查系统,即添加了ML模型,与当前仅使用SpO2的标准方法相比,灵敏度提高了约10个百分点,对特异性的影响最小或没有影响。临床相关性——这为一种结合脉搏血氧仪特征以改善CCHD检测且对假阳性率影响很小的ML算法建立了概念验证。

相似文献

1
Enhanced Critical Congenital Cardiac Disease Screening by Combining Interpretable Machine Learning Algorithms.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1403-1406. doi: 10.1109/EMBC46164.2021.9630111.
2
Machine Learning-Based Critical Congenital Heart Disease Screening Using Dual-Site Pulse Oximetry Measurements.
J Am Heart Assoc. 2024 Jun 18;13(12):e033786. doi: 10.1161/JAHA.123.033786. Epub 2024 Jun 15.
3
Pulse oximetry screening for critical congenital heart defects.
Cochrane Database Syst Rev. 2018 Mar 1;3(3):CD011912. doi: 10.1002/14651858.CD011912.pub2.
4
Oxygen Saturation and Perfusion Index-Based Enhanced Critical Congenital Heart Disease Screening.
Am J Perinatol. 2020 Jan;37(2):158-165. doi: 10.1055/s-0039-1685445. Epub 2019 Apr 19.
5
Early screening for critical congenital heart defects in asymptomatic newborns in Bursa province.
J Matern Fetal Neonatal Med. 2016;29(7):1105-7. doi: 10.3109/14767058.2015.1035642. Epub 2015 Apr 22.
6
Use of Pulse Oximetry Pulsatility Index Screening for Critical Congenital Heart Disease.
Am J Perinatol. 2024 May;41(S 01):e545-e549. doi: 10.1055/a-1904-9389. Epub 2022 Jul 20.
9
Pulse oximetry findings in newborns with antenatally diagnosed congenital heart disease.
Eur J Pediatr. 2018 May;177(5):683-689. doi: 10.1007/s00431-018-3093-2. Epub 2018 Feb 5.

引用本文的文献

1
Artificial Intelligence in Congenital Heart Disease: Current State and Prospects.
JACC Adv. 2022 Dec 14;1(5):100153. doi: 10.1016/j.jacadv.2022.100153. eCollection 2022 Dec.
2
Cost-utility analysis of prenatal diagnosis of congenital cardiac diseases using deep learning.
Cost Eff Resour Alloc. 2024 May 22;22(1):44. doi: 10.1186/s12962-024-00550-3.
3
4
A Machine Learning Driven Pipeline for Automated Photoplethysmogram Signal Artifact Detection.
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2021 Dec;2021:149-154. doi: 10.1109/chase52844.2021.00035.

本文引用的文献

2
A tablet- and mobile-based application for remote diagnosis and analysis of movement disorder symptoms.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5588-5591. doi: 10.1109/EMBC44109.2020.9176044.
3
Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:58-61. doi: 10.1109/EMBC44109.2020.9176339.
4
Updated Strategies for Pulse Oximetry Screening for Critical Congenital Heart Disease.
Pediatrics. 2020 Jul;146(1). doi: 10.1542/peds.2019-1650. Epub 2020 Jun 4.
5
Pulse oximetry screening for critical congenital heart defects.
Cochrane Database Syst Rev. 2018 Mar 1;3(3):CD011912. doi: 10.1002/14651858.CD011912.pub2.
7
Late Diagnosis of Coarctation Despite Prenatal Ultrasound and Postnatal Pulse Oximetry.
Pediatrics. 2015 Aug;136(2):e406-12. doi: 10.1542/peds.2015-1155. Epub 2015 Jul 13.
8
Estimated number of infants detected and missed by critical congenital heart defect screening.
Pediatrics. 2015 Jun;135(6):1000-8. doi: 10.1542/peds.2014-3662. Epub 2015 May 11.
9
Missed diagnosis of critical congenital heart disease.
Arch Pediatr Adolesc Med. 2008 Oct;162(10):969-74. doi: 10.1001/archpedi.162.10.969.
10
Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005.
J Pediatr. 2008 Dec;153(6):807-13. doi: 10.1016/j.jpeds.2008.05.059. Epub 2008 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验