Lai Zhengfeng, Vadlaputi Pranjali, Tancredi Daniel J, Garg Meena, Koppel Robert I, Goodman Mera, Hogan Whitnee, Cresalia Nicole, Juergensen Stephan, Manalo Erlinda, Lakshminrusimha Satyan, Chuah Chen-Nee, Siefkes Heather
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1403-1406. doi: 10.1109/EMBC46164.2021.9630111.
Critical Congenital Heart Disease (CCHD) screening that only uses oxygen saturation (SpO2), measured by pulse oximetry, fails to detect an estimated 900 US newborns annually. The addition of other pulse oximetry features such as perfusion index (PIx), heart rate, pulse delay and photoplethysmography characteristics may improve detection of CCHD, especially those with systemic blood flow obstruction such as Coarctation of the Aorta (CoA). To comprehensively study the most relevant features associated with CCHD, we investigated interpretable machine learning (ML) algorithms by using Recursive Feature Elimination (RFE) to identify an optimal subset of features. We then incorporated the trained ML models into the current SpO2-alone screening algorithm. Our proposed enhanced CCHD screening system, which adds the ML model, improved sensitivity by approximately 10 percentage points compared to the current standard SpO2-alone method with minimal to no impact on specificity.Clinical relevance- This establishes proof of concept for a ML algorithm that combines pulse oximetry features to improve detection of CCHD with little impact on false positive rate.
仅使用脉搏血氧仪测量的血氧饱和度(SpO2)进行的危重型先天性心脏病(CCHD)筛查,每年无法检测出约900名美国新生儿。添加其他脉搏血氧仪特征,如灌注指数(PIx)、心率、脉搏延迟和光电容积脉搏波描记术特征,可能会改善CCHD的检测,尤其是那些存在体循环血流梗阻的疾病,如主动脉缩窄(CoA)。为了全面研究与CCHD相关的最相关特征,我们通过使用递归特征消除(RFE)来识别最佳特征子集,从而研究可解释的机器学习(ML)算法。然后,我们将经过训练的ML模型纳入当前仅使用SpO2的筛查算法中。我们提出的增强型CCHD筛查系统,即添加了ML模型,与当前仅使用SpO2的标准方法相比,灵敏度提高了约10个百分点,对特异性的影响最小或没有影响。临床相关性——这为一种结合脉搏血氧仪特征以改善CCHD检测且对假阳性率影响很小的ML算法建立了概念验证。