Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4444-4447. doi: 10.1109/EMBC46164.2021.9630344.
Gradient coils are vital for Magnetic Resonance Imaging (MRI). Their rapid switching generates eddy currents in the surrounding metallic structures of the MRI scanner causing undesirable thermal, acoustic, and field distortion effects. The use of actively shielded gradient coils does not eliminate such undesirable effects totally. Use of passive shielding was proposed lately to particularly help in mitigating eddy currents and loud acoustic noise. Numerical computations are necessary for calculating eddy currents and evaluating the efficacy of passive shielding. Harmonic and temporal eddy current analysis caused by gradient coil(s) using network analysis (NA) can be faster and more flexible than the traditional FDTD and FEM methods. NA was used more than a decade ago but was limited to analyzing eddy currents resulting from z-gradient coils of separated turns. NA with stream function was recently modified resulting in the more general Multilayer Integral Method (MIM) for simulation of eddy currents in thin structures of arbitrary geometries. In this work, we compared the performance of the NA method and an adapted MIM method to analyze eddy current in both the passive shielding and cryostat to the Ansys Maxwell 3D analysis thus evaluating the performance of gradient configurations with and without passive shielding. Both an unconnected and a connected z-gradient coil configuration were used. Our analysis showed high agreement in the profiles of eddy ohmic losses in metallic structures using the three methods. The NA method is the most computationally efficient however, it is limited to specific symmetries unlike the more general MIM and Ansys methods. Our implementation of the adapted MIM method showed computational efficiency relative to Ansys with comparable values. We have developed a computationally efficient eddy current analysis framework that can be used to evaluate more designs for passive shielding using different configurations of MRI gradient coils.
梯度线圈对磁共振成像(MRI)至关重要。它们的快速切换会在 MRI 扫描仪的周围金属结构中产生涡流,从而导致不理想的热、声和场畸变效应。使用主动屏蔽梯度线圈并不能完全消除这些不理想的效应。最近提出使用无源屏蔽来特别有助于减轻涡流和大声噪声。为了计算涡流并评估无源屏蔽的效果,需要进行数值计算。使用网络分析(NA)对梯度线圈引起的谐波和时变涡流进行分析比传统的 FDTD 和 FEM 方法更快、更灵活。NA 十多年前就已被使用,但仅限于分析分离匝的 z 梯度线圈产生的涡流。最近,对基于流函数的 NA 进行了修改,从而产生了更通用的多层积分法(MIM),用于模拟任意几何形状的薄结构中的涡流。在这项工作中,我们比较了 NA 方法和改进的 MIM 方法在无源屏蔽和低温容器中分析涡流的性能,与 Ansys Maxwell 3D 分析相比,从而评估了带有和不带有无源屏蔽的梯度配置的性能。我们使用了未连接和连接的 z 梯度线圈配置。我们的分析表明,这三种方法在金属结构中的涡流欧姆损耗分布上具有高度一致性。NA 方法是计算效率最高的方法,但是与更通用的 MIM 和 Ansys 方法不同,它仅限于特定的对称性。我们改进的 MIM 方法的实现与 Ansys 相比具有相当的计算效率。我们已经开发了一种计算效率高的涡流分析框架,可用于评估使用不同 MRI 梯度线圈配置的无源屏蔽的更多设计。