Suppr超能文献

基于 EMD 的混合噪声添加滤波 Bank Sinc-ShallowNet 数据增强的运动想象分类。

Filter Bank Sinc-ShallowNet with EMD-based Mixed Noise Adding Data Augmentation for Motor Imagery Classification.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5837-5841. doi: 10.1109/EMBC46164.2021.9629728.

Abstract

Motor imagery-based brain computer interface (MI-BCI) is a representative active BCI paradigm which is widely employed in the rehabilitation field. In MI-BCI, a classification model is built to identify the target limb from MI-based EEG signals, but the performance of models cannot meet the demand for practical use. Lightweight neural networks in deep learning methods are used to build high performance models in MI-BCI. Small sample sizes and the lack of multi-scale information extraction in frequency domain limit the performance improvement of lightweight neural networks. To solve these problems, the Filter Bank Sinc-ShallowNet (FB-Sinc-ShallowNet) algorithm combined with the mixed noise adding method based on empirical mode decomposition (EMD) was proposed. The FB-Sinc-ShallowNet algorithm improves a lightweight neural network Sinc-ShallowNet with a filter bank structure corresponding to four sensory motor rhythms. The mixed noise adding method employs the EMD method to improve the quality of generated data. The proposed method was evaluated on the BCI competition IV IIa dataset and can achieve highest average accuracy of 77.2%, about 6.34% higher than state-of-the-art method Sinc-ShallowNet. This work implies the effectiveness of filter bank structure in lightweight neural networks and provides a novel option for data augmentation and classification of MI-based EEG signals, which can be applied in the rehabilitation field for decoding MI-EEG with few samples.

摘要

基于运动想象的脑机接口(MI-BCI)是一种有代表性的主动 BCI 范式,广泛应用于康复领域。在 MI-BCI 中,构建分类模型以从基于 MI 的 EEG 信号中识别目标肢体,但模型的性能无法满足实际使用的需求。深度学习方法中的轻量级神经网络用于构建 MI-BCI 中的高性能模型。小样本量和频域中缺乏多尺度信息提取限制了轻量级神经网络的性能提升。为了解决这些问题,提出了一种结合基于经验模态分解(EMD)的混合噪声添加方法的滤波器组 Sinc-ShallowNet(FB-Sinc-ShallowNet)算法。FB-Sinc-ShallowNet 算法使用滤波器组结构对轻量级神经网络 Sinc-ShallowNet 进行改进,滤波器组结构对应于四个感觉运动节律。混合噪声添加方法使用 EMD 方法来提高生成数据的质量。该方法在 BCI 竞赛 IV IIa 数据集上进行了评估,可实现最高平均准确率 77.2%,比最先进的方法 Sinc-ShallowNet 高约 6.34%。这项工作意味着滤波器组结构在轻量级神经网络中的有效性,并为基于 MI 的 EEG 信号的增强和分类提供了一种新的选择,可应用于康复领域,对少量样本进行 MI-EEG 解码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验