Suppr超能文献

使用特征重要性对新冠疫情墨西哥患者数据集(Covid19MPD)进行分类和预测

Covid19-Mexican-Patients' Dataset (Covid19MPD) Classification and Prediction Using Feature Importance.

作者信息

Almustafa Khaled Mohamad

机构信息

Department of Information Systems, College of Computer and Information Systems Prince Sultan University Riyadh Kingdom of Saudi Arabia.

出版信息

Concurr Comput. 2022 Feb 15;34(4):e6675. doi: 10.1002/cpe.6675. Epub 2021 Oct 16.

Abstract

Coronavirus disease, Covid19, pandemic has a great effect on human heath worldwide since it was first detected in late 2019. A clear understanding of the structure of the available Covid19 datasets might give the healthcare provider a better understanding of identifying some of the cases at an early stage. In this article, we will be looking into a Covid19 Mexican Patients' Dataset (Covid109MPD), and we will apply number of machine learning algorithms on the dataset to select the best possible classification algorithm for the death and survived cases in Mexico, then we will study the performance of the enhancement of the specified classifiers in term of their features selection in order to be able to predict sever, and or death, cases from the available dataset. Results show that J48 classifier gives the best classification accuracy with 94.41% and RMSE = 0.2028 and ROC = 0.919, compared to other classifiers, and when using feature selection method, J48 classifier can predict a surviving Covid19MPD case within 94.88% accuracy, and by using only 10 out of the total 19 features.

摘要

自2019年末首次发现新型冠状病毒肺炎(Covid-19)大流行以来,它对全球人类健康产生了巨大影响。清楚了解现有Covid-19数据集的结构可能会让医疗服务提供者更好地在早期识别一些病例。在本文中,我们将研究一个Covid-19墨西哥患者数据集(Covid109MPD),并在该数据集上应用多种机器学习算法,以选择针对墨西哥死亡和存活病例的最佳分类算法,然后我们将研究指定分类器在特征选择方面增强后的性能,以便能够从可用数据集中预测重症和/或死亡病例。结果表明,与其他分类器相比,J48分类器的分类准确率最高,为94.41%,均方根误差(RMSE)=0.2028,曲线下面积(ROC)=0.919,并且在使用特征选择方法时,J48分类器能够以94.88%的准确率预测Covid19MPD存活病例,且仅使用总共19个特征中的10个特征。

相似文献

1
Covid19-Mexican-Patients' Dataset (Covid19MPD) Classification and Prediction Using Feature Importance.
Concurr Comput. 2022 Feb 15;34(4):e6675. doi: 10.1002/cpe.6675. Epub 2021 Oct 16.
2
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
Med Phys. 2018 Jul;45(7):3449-3459. doi: 10.1002/mp.12967. Epub 2018 Jun 13.
3
Prediction of heart disease and classifiers' sensitivity analysis.
BMC Bioinformatics. 2020 Jul 2;21(1):278. doi: 10.1186/s12859-020-03626-y.
4
Prediction of Skin Disease Using Ensemble Data Mining Techniques and Feature Selection Method-a Comparative Study.
Appl Biochem Biotechnol. 2020 Feb;190(2):341-359. doi: 10.1007/s12010-019-03093-z. Epub 2019 Jul 27.
7
Comparative analysis of supervised learning algorithms for prediction of cardiovascular diseases.
Technol Health Care. 2024;32(S1):241-251. doi: 10.3233/THC-248021.
9
Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
Comput Methods Programs Biomed. 2021 Jan;198:105770. doi: 10.1016/j.cmpb.2020.105770. Epub 2020 Sep 30.
10
Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection.
Sensors (Basel). 2022 Nov 30;22(23):9326. doi: 10.3390/s22239326.

引用本文的文献

1
A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities.
Front Artif Intell. 2025 Jan 7;7:1479855. doi: 10.3389/frai.2024.1479855. eCollection 2024.
3
Combating Covid-19 using machine learning and deep learning: Applications, challenges, and future perspectives.
Array (N Y). 2023 Mar;17:100271. doi: 10.1016/j.array.2022.100271. Epub 2022 Dec 10.

本文引用的文献

1
Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing.
Internet Things (Amst). 2020 Sep;11:100222. doi: 10.1016/j.iot.2020.100222. Epub 2020 May 12.
2
Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning Based Approach.
Biocybern Biomed Eng. 2021 Jul-Sep;41(3):867-879. doi: 10.1016/j.bbe.2021.05.013. Epub 2021 Jun 5.
4
Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review.
Chaos Solitons Fractals. 2020 Oct;139:110059. doi: 10.1016/j.chaos.2020.110059. Epub 2020 Jun 25.
5
COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning.
Front Immunol. 2020 Jul 3;11:1581. doi: 10.3389/fimmu.2020.01581. eCollection 2020.
6
Prediction of heart disease and classifiers' sensitivity analysis.
BMC Bioinformatics. 2020 Jul 2;21(1):278. doi: 10.1186/s12859-020-03626-y.
7
Automated detection of COVID-19 cases using deep neural networks with X-ray images.
Comput Biol Med. 2020 Jun;121:103792. doi: 10.1016/j.compbiomed.2020.103792. Epub 2020 Apr 28.
8
Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study.
PLoS One. 2020 Apr 24;15(4):e0232391. doi: 10.1371/journal.pone.0232391. eCollection 2020.
9
Cleft prediction before birth using deep neural network.
Health Informatics J. 2020 Dec;26(4):2568-2585. doi: 10.1177/1460458220911789. Epub 2020 Apr 14.
10
Artificial intelligence and machine learning to fight COVID-19.
Physiol Genomics. 2020 Apr 1;52(4):200-202. doi: 10.1152/physiolgenomics.00029.2020. Epub 2020 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验