Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India.
Protein Sci. 2022 Mar;31(3):628-638. doi: 10.1002/pro.4258. Epub 2021 Dec 18.
Accumulation of formaldehyde, a highly reactive molecule, in the cell is toxic, and requires detoxification for the organism's survival. Mycothiol-dependent formaldehyde dehydrogenase or S-nitrosomycothiol reductase (MscR) from Mycobacterium smegmatis and Mycobacterium tuberculosis was previously known for detoxifying formaldehyde and protecting the cell against nitrosative stress. We here show that M. smegmatis MscR exhibits a mycothiol-independent formaldehyde dehydrogenase (FDH) activity in vitro. Presence of zinc in the reaction enhances MscR activity, thus making it a zinc-dependent FDH. Interestingly, MscR utilizes only formaldehyde and no other primary aldehydes as its substrate in vitro, and M. smegmatis lacking mscR (ΔmscR) shows sensitivity exclusively toward formaldehyde. Bioinformatics analysis of MscRs from various bacteria reveals 10 positionally conserved cysteines, whose importance in structural stability and biological activity is not yet investigated. To explore the significance of these cysteines, we generated MscR single Cys variants by systematically replacing each cysteine with serine. All of the Cys variants except C39S and C309S are unable to show a complete rescue of ΔmscR on formaldehyde, show a significant loss of enzymatic activity in vitro, pronounced structural alterations as probed by circular dichroism, and loss of homotetramerization on size exclusion chromatography. Our data thus reveal the importance of intact cysteines in the structural stability and biological activity of MscR, which is a dedicated FDH in M. smegmatis, and shows ~84% identity with M. tuberculosis MscR. We believe that this knowledge will further help in the development of FDH as a potential drug target against M. tuberculosis infections.
甲醛是一种具有高反应性的分子,在细胞内积累会对细胞造成毒性,需要通过解毒来维持生物体的生存。先前已知分枝杆菌属的巯基依赖甲醛脱氢酶或 S-亚硝基巯基还原酶(MscR)和结核分枝杆菌中的 MscR 能够解毒甲醛并保护细胞免受硝化应激。我们在这里表明,耻垢分枝杆菌 MscR 在体外表现出一种与巯基无关的甲醛脱氢酶(FDH)活性。反应中锌的存在增强了 MscR 的活性,使其成为一种锌依赖的 FDH。有趣的是,MscR 在体外仅利用甲醛,而不利用其他醛作为其底物,并且缺乏 mscR(ΔmscR)的耻垢分枝杆菌对甲醛表现出敏感性。对来自不同细菌的 MscR 的生物信息学分析揭示了 10 个位置保守的半胱氨酸,但其在结构稳定性和生物活性中的重要性尚未得到研究。为了探索这些半胱氨酸的意义,我们通过系统地用丝氨酸取代每个半胱氨酸来生成 MscR 单个 Cys 变体。除了 C39S 和 C309S 之外的所有 Cys 变体都无法在甲醛上完全拯救 ΔmscR,在体外表现出显著的酶活性丧失,用圆二色性探测到明显的结构改变,以及在尺寸排阻色谱上失去同四聚体化。因此,我们的数据揭示了完整半胱氨酸在 MscR 结构稳定性和生物活性中的重要性,MscR 是耻垢分枝杆菌中的一种专用 FDH,与结核分枝杆菌 MscR 具有约 84%的同源性。我们相信,这一知识将有助于进一步将 FDH 作为针对结核分枝杆菌感染的潜在药物靶点进行开发。