Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD, USA.
BMC Bioinformatics. 2021 Dec 14;22(1):592. doi: 10.1186/s12859-021-04505-w.
Next-generation sequencing platforms allow us to sequence millions of small fragments of DNA simultaneously, revolutionizing cancer research. Sequence analysis has revealed that cancer driver genes operate across multiple intricate pathways and networks with mutations often occurring in a mutually exclusive pattern. Currently, low-frequency mutations are understudied as cancer-relevant genes, especially in the context of networks.
Here we describe a tool, gcMECM, that enables us to visualize the functionality of mutually exclusive genes in the subnetworks derived from mutation associations, gene-gene interactions, and graph clustering. These subnetworks have revealed crucial biological components in the canonical pathway, especially those mutated at low frequency. Examining the subnetwork, and not just the impact of a single gene, significantly increases the statistical power of clinical analysis and enables us to build models to better predict how and why cancer develops.
gcMECM uses a computationally efficient and scalable algorithm to identify subnetworks in a canonical pathway with mutually exclusive mutation patterns and distinct biological functions.
下一代测序平台使我们能够同时对数百万个 DNA 小片段进行测序,从而彻底改变了癌症研究。序列分析表明,癌症驱动基因在多个复杂的途径和网络中运作,突变通常以相互排斥的模式发生。目前,低频突变作为癌症相关基因的研究还不够深入,尤其是在网络的背景下。
在这里,我们描述了一种工具 gcMECM,它使我们能够可视化来自突变关联、基因-基因相互作用和图聚类的子网络中相互排斥基因的功能。这些子网络揭示了经典途径中的关键生物学成分,特别是那些低频突变的成分。检查子网络,而不仅仅是单个基因的影响,显著提高了临床分析的统计能力,并使我们能够构建模型来更好地预测癌症是如何以及为何发展的。
gcMECM 使用一种计算效率高且可扩展的算法来识别具有相互排斥突变模式和独特生物学功能的经典途径中的子网络。